APPENDIX 3 EIL CALCULATIONS | Inputs | |---| | Select contaminant from list below | | As | | Below needed to calculate fresh and aged | | ACLs | Below needed to calculate fresh and aged ABCs | | ABCS | | | | | | | | | | or for fresh ABCs only | | | | | | | | | | or for aged ABCs only | | ar in a grant a com, | | | | | | | | | | | | 1 | | Outputs | | | |--|------------------------------|------| | Land use | Arsenic generic EILs | | | | (mg contaminant/kg dry soil) | | | | | | | | Fresh | Aged | | National parks and areas of
high conservation value | 20 | 40 | | Urban residential and open public spaces | 50 | 100 | | Commercial and industrial | 80 | 160 | | Inputs | | | |--|--|--| | Select contaminant from list below | | | | Cr_III | | | | Below needed to calculate fresh and aged | | | | ACLs | Enter % clay (values from 0 to 100%) | | | | 4 | | | | Below needed to calculate fresh and aged | | | | | | | | ABCs | | | | • | | | | • | | | | ABCs | | | | ABCs Measured background concentration | | | | ABCs Measured background concentration | | | | Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) | | | | Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate | | | | Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration | | | | Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate | | | | Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration | | | | Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration 7 | | | | Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration 7 or for aged ABCs only Enter State (or closest State) | | | | Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration 7 or for aged ABCs only Enter State (or closest State) NSW | | | | Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration 7 or for aged ABCs only Enter State (or closest State) | | | | Outputs | | | |--|--|------| | Land use | Cr III soil-specific EILs (mg contaminant/kg dry soil) | | | | | | | | | | | | Fresh | Aged | | National parks and areas of
high conservation value | 110 | 100 | | Urban residential and open public spaces | 190 | 300 | | Commercial and industrial | 270 | 500 | | Inputs | | | |--|--|--| | Select contaminant from list below | | | | Cu
Below needed to calculate fresh and aged | | | | ACLs | | | | Enter cation exchange capacity (silver thiourea method) (values from 0 to 100 cmolc/kg dwt) | | | | 13 | | | | Enter soil pH (calcium chloride method)
(values from 1 to 14) | | | | 6.4 | | | | Enter organic carbon content (%OC) | | | | (values from 0 to 50%) | | | | 1 | | | | Below needed to calculate fresh and aged ABCs | | | | Measured background concentration (mg/kg). Leave blank if no measured value | | | | or for fresh ABCs only | | | | Enter iron content (aqua regia method)
(values from 0 to 50%) to obtain estimate
of background concentration | | | | 7 | | | | or for aged ABCs only | | | | Enter State (or closest State) | | | | NSW | | | | Enter traffic volume (high or low) | | | low | Outputs | | | |--|------------------------------|------| | Land use | Cu soil-specific EILs | | | | (mg contaminant/kg dry soil) | | | | | | | | Fresh | Aged | | National parks and areas of
high conservation value | 70 | 85 | | Urban residential and open public spaces | 120 | 220 | | Commercial and industrial | 180 | 310 | | Inputs | |---| | Select contaminant from list below | | Ni | | Below needed to calculate fresh and aged | | ACLs | | Enter cation exchange capacity (silver | | thiourea method) (values from 0 to 100 | | cmolc/kg dwt) | | | | 40 | | 13 | Below needed to calculate fresh and aged | | ABCs | | ABOS | | | | Measured background concentration | | (mg/kg). Leave blank if no measured value | | | | or for fresh ABCs only | | Enter iron content (aqua regia method) | | (values from 0 to 50%) to obtain estimate | | of background concentration | | 7 | | | | or for aged ABCs only | | | | Enter State (or closest State) | | NSW | | | | Enter traffic volume (high or low) | | low | | | | Outputs | | | |---|------------------------------|------| | Land use | Ni soil-specific EILs | | | | (mg contaminant/kg dry soil) | | | | | | | | Fresh | Aged | | National parks and areas of high conservation value | 35 | 40 | | Urban residential and open public spaces | 90 | 200 | | Commercial and industrial | 150 | 350 | | Inputs | | | |--|--|--| | Select contaminant from list below | | | | Pb | | | | Below needed to calculate fresh and aged | | | | ACLs | Below needed to calculate fresh and aged | | | | ABCs | or for fresh ABCs only | or for aged ABCs only | Outputs | | | |---|------------------------------|------| | Land use | Lead generic EILs | | | | (mg contaminant/kg dry soil) | | | | | | | | Fresh | Aged | | National parks and areas of high conservation value | 110 | 470 | | Urban residential and open public spaces | 270 | 1100 | | Commercial and industrial | 440 | 1800 | | Inputs | | | |---|--|--| | Select contaminant from list below | | | | Zn Below needed to calculate fresh and aged | | | | ACLs | | | | Enter cation exchange capacity (silver thiourea method) (values from 0 to 100 cmolc/kg dwt) | | | | 13 | | | | Enter soil pH (calcium chloride method) (values from 1 to 14) | | | | 6.4 | | | | Below needed to calculate fresh and aged | | | | ABCs | | | | Measured background concentration (mg/kg). Leave blank if no measured value | | | | or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration 7 | | | | or for aged ABCs only | | | | Enter State (or closest State) | | | | NSW | | | | Enter traffic volume (high or low) | | | low | Outputs | | | |---|------------------------------|------| | Land use | Zn soil-specific EILs | | | | (mg contaminant/kg dry soil) | | | | | | | | Fresh | Aged | | National parks and areas of high conservation value | 80 | 190 | | Urban residential and open public spaces | 220 | 570 | | Commercial and industrial | 340 | 850 | # APPENDIX 4 CALIBRATION CERTIFICATES #### Certificate of Calibration Serial Number: 58027 Model: XL3t 500 Software: 8.4J.14 Date of Q.C.: 22-January-2021 Resolution: Shaping 20 178.1 Escale: Shaping 20 7.31 Source: Tube Inspector: Dave S Calibration type: Empirical 60 second analysis time per filter, all switched on Elements that are in BLUE BOLD should be detected Elements not in BLUE BOLD need not be detected but record if present | NIST HIGH 2710 | Certified | Low | High | Measured | Err | Pass | <lod?< th=""></lod?<> | |----------------|-----------|---------|--------|----------|---------|------|-----------------------| | Ba | 707 | 507 | 978 | 750.79 | 44.7 | OK | | | Cs | 107 | 0 | 400 | 66.34 | 9.93 | ок | | | Te | NR | -300 | 300 | 103.85 | 35.58 | ок | | | Sb | 38.4 | -100 | 110 | 50.1 | 11.87 | OK | | | Sn | NR | -100 | 100 | 68.46 | 15.1 | OK | | | Cd | 21.8 | -10 | 50 | 28.25 | 6.75 | OK | | | Ag | 35.3 | 0 | 60 | 36.47 | 5.46 | ОК | | | Pd | NR | -70 | 70 | 4.99 | 7.46 | OK | < LOD | | Mo | 19 | 0 | 30 | 18.83 | 5.37 | OK | | | Zr | NR | | | 119.4 | 7.66 | | | | Sr | 330 | 280 | 380 | 315.18 | 9.81 | OK | | | U | 25 | 10 | 40 | 26.78 | 12.06 | OK | | | Rb | 120 | 80 | 160 | 122.88 | 7.91 | OK | | | Th | 13 | -80 | 80 | 47.98 | 20.9 | OK | | | Pb | 5532 | 5400 | 5832 | 5535.76 | 80.74 | OK | | | Se | NR | -30 | 30 | -13.39 | 6.75 | OK | < LOD | | As | 626 | 510 |
750 | 713.0 | 66.1 | OK | | | Hg | 32.6 | 0 | 50 | 35.6 | 13.7 | OK | | | Au | | -20 | 25 | -4.9 | 12.1 | OK | < LOD | | Zn | 6952 | 6700 | 7250 | 6897.2 | 113.5 | OK | | | W | 93 | 0 | 400 | 107.4 | 91.5 | OK | < LOD | | Cu | 2950 | 2700 | 3250 | 2892.0 | 85.2 | OK | | | Ni | 14.3 | 0 | 105 | 57.80 | 38.44 | OK | | | Co | 10 | -270 | 270 | -114.31 | 129.99 | OK | < LOD | | Fe | 33800 | 30420 | 37180 | 36881.7 | 493.11 | OK | | | Mn | 10100 | 9500 | 12000 | 9869.4 | 304.3 | OK | | | Cr | 39 | -100 | 120 | 48.39 | 23.61 | OK | | | V | 76.6 | -200 | 300 | 94.94 | 47.44 | OK | | | Ti | 2830 | 2260 | 3500 | 2738.68 | 148.73 | OK | | | Sc | 8.7 | -160 | 160 | 41.05 | 29.23 | OK | < LOD | | Ca | 12500 | 8000 | 17000 | 10337.2 | 310.70 | OK | | | K | 21100 | 16100 | 26100 | 20173.3 | 584.76 | OK | | | S | 2400 | -140000 | 140000 | 4470.86 | 1170.01 | OK | | | NIST LOW 2709 | Certified | Low | High | Measured | Err | Pass | <lod?< th=""></lod?<> | |---------------|-----------|---------|--------|----------|--------|------|-----------------------| | Ba | 968 | 638 | 1238 | 773.93 | 39.45 | ОК | | | Cs | 5.3 | -300 | 300 | 24.32 | 8.54 | ОК | | | Te | NR | -300 | 300 | 11.22 | 30.74 | ОК | < LOD | | Sb | 7.9 | -90 | 100 | -2.63 | 9.98 | OK | < LOD | | Sn | NR | -100 | 100 | 24.37 | 12.91 | OK | | | Cd | 0.38 | -60 | 60 | -6.16 | 5.37 | OK | < LOD | | Ag | 0.41 | -40 | 40 | -4.23 | 3.92 | OK | < LOD | | Pd | NR | -60 | 60 | -0.87 | 6.41 | OK | < LOD | | Mo | 2 | -10 | 10 | 2.25 | 4.38 | ок | < LOD | | Zr | 160 | 120 | 200 | 161.74 | 6.56 | OK | | | Sr | 231 | 180 | 300 | 216.95 | 7.08 | OK | | | U | 3 | -80 | 80 | 2.81 | 7.76 | OK | < LOD | | Rb | 96 | 76 | 115 | 80.10 | 5.28 | OK | | | Th | 11 | -80 | 80 | 14.58 | 4.90 | OK | | | Pb | 18.9 | 0 | 35 | 6.85 | 6.71 | OK | < LOD | | Se | 1.57 | -30 | 30 | -8.11 | 3.08 | OK | < LOD | | As | 17.7 | 0 | 35 | 7.87 | 5.31 | OK | < LOD | | Hg | 1.4 | -10 | 10 | 6.8 | 6.2 | OK | < LOD | | Au | | -15 | 15 | -3.9 | 3.8 | OK | < LOD | | Zn | 106 | 50 | 160 | 51.34 | 13.07 | OK | | | W | 2 | -80 | 80 | 26.52 | 37.16 | OK | < LOD | | Cu | 34.6 | 0 | 60 | 46.23 | 17.86 | OK | | | Ni | 88 | 0 | 125 | 61.48 | 30.06 | OK | | | Co | 13.4 | -250 | 280 | 63.2 | 103.68 | OK | < LOD | | Fe | 35000 | 25000 | 35000 | 29367.32 | 379.49 | OK | | | Mn | 538 | 0 | 700 | 394.9 | 69.8 | OK | | | Cr | 130 | 30 | 200 | 134.7 | 23.2 | OK | | | V | 112 | -300 | 400 | 147.6 | 47.4 | OK | | | Ti | 3420 | 2700 | 4400 | 3532.2 | 149.7 | OK | | | Sc | NR | -250 | 250 | 0.5 | 33.6 | OK | < LOD | | Ca | 18900 | 13900 | 27000 | 19249.0 | 369.8 | OK | | | K | 20300 | 15300 | 25300 | 18618.7 | 514.8 | OK | | | S | 890 | -150000 | 150000 | 1359.3 | 848.8 | OK | | | GBW 07411 | Certified | Low | High | Measured | Err | Pass | <lod?< th=""></lod?<> | |-----------|-----------|--------|--------|----------|--------|------|-----------------------| | Ba | 550 | 320 | 800 | 608.31 | 42.91 | OK | | | Cs | 9 | -457 | 457 | 41.69 | 9.59 | OK | | | Te | NR | -300 | 300 | 69.67 | 34.56 | OK | | | Sb | 9 | -80 | 100 | 21.32 | 11.36 | OK | | | Sn | NR | -120 | 120 | 106.1 | 15.06 | OK | | | Cd | 28 | 0 | 47 | 32.57 | 6.72 | OK | | | Ag | 5 | -35 | 47 | 7.17 | 4.65 | OK | | | Pd | NR | -60 | 60 | -6.54 | 6.89 | OK | < LOD | | Mo | 2 | -9 | 9 | 3.41 | 5.06 | OK | < LOD | | Zr | 192 | 25 | 359 | 197.95 | 7.99 | OK | | | Sr | 130 | 95 | 159 | 133.49 | 6.47 | OK | | | U | 3 | -19 | 19 | 3.08 | 9.45 | OK | < LOD | | Rb | 111 | 61 | 120 | 104.29 | 6.86 | OK | | | Th | 13 | -18 | 45 | 31.63 | 15.04 | OK | | | Pb | 2700 | 2324 | 2900 | 2733.48 | 56.23 | OK | | | Se | 1 | -10 | 15 | -14.91 | 5.17 | OK | < LOD | | As | 205 | 127 | 283 | 173.88 | 44.57 | OK | | | Hg | 0 | -10 | 50 | -1.50 | 9.71 | OK | < LOD | | Au | | -10 | 15 | -3.55 | 8.47 | OK | < LOD | | Zn | 3800 | 2711 | 4880 | 3725.91 | 82.24 | OK | | | W | 7 | -184 | 184 | 56.35 | 70.80 | OK | < LOD | | Cu | 65 | 42 | 80 | 63.08 | 23.00 | OK | | | Ni | 24 | -35 | 117 | 47.64 | 37.50 | OK | < LOD | | Co | 12 | -232 | 232 | 26.86 | 13.74 | OK | | | Fe | | 0 | 60000 | 59369.55 | 612.49 | OK | | | Mn | 9700 | 4561 | 10643 | 9657.5 | 298.6 | OK | | | Cr | 60 | -317 | 380 | 48.0 | 27.9 | OK | | | V | 89 | -325 | 380 | 157.4 | 60.9 | ОК | | | Ti | 4100 | 3283 | 4917 | 4469.4 | 195.0 | OK | | | Sc | 11 | -300 | 300 | 14.3 | 51.6 | OK | < LOD | | Ca | | 0 | 365000 | 30755.6 | 562.5 | OK | | | K | | 0 | 25000 | 17988.9 | 625.9 | ОК | | | S | | -16000 | 16000 | 1902.4 | 1214.5 | OK | | | SiO2 (Blank) | Expected** | Low | High | Measured | Err | Pass | <lod?< th=""></lod?<> | |--------------|------------|---------|--------|----------|--------|------|-----------------------| | Ba | 0 | -200 | 200 | -51.62 | 29.91 | ок | < LOD | | Cs | 0 | -260 | 260 | -11.24 | 7.15 | ОК | < LOD | | Te | 0 | -220 | 220 | -2.05 | 26.08 | ок | < LOD | | Sb | 0 | -120 | 80 | -2.29 | 8.51 | OK | < LOD | | Sn | 0 | -120 | 70 | -0.63 | -0.63 | OK | | | Cd | 0 | -50 | 50 | -5.49 | 4.59 | OK | < LOD | | Ag | 0 | -30 | 30 | -0.65 | 3.42 | OK | < LOD | | Pd | 0 | -50 | 50 | -7.38 | 5.28 | OK | < LOD | | Mo | 0 | -10 | 10 | 1.79 | 3.44 | OK | < LOD | | Zr | 0 | -10 | 10 | 1.04 | 2.03 | OK | < LOD | | Sr | 0 | -10 | 10 | -2.02 | 1.27 | OK | < LOD | | U | 0 | -10 | 10 | 1.44 | 3.71 | ok | < LOD | | Rb | <210 | -10 | 210 | 0.3 | 1.5 | ok | < LOD | | Th | 0 | -10 | 10 | -1.49 | 2.65 | ok | < LOD | | Pb | 0 | -10 | 10 | -2.69 | 4.75 | ok | < LOD | | Se | 0 | -20 | 20 | -7.97 | 2.08 | ok | < LOD | | As | 0 | -10 | 10 | 0.16 | 3.48 | ok | < LOD | | Hg | 0 | -10 | 10 | 1.13 | 4.22 | ok | < LOD | | Au | 0 | -10 | 10 | -0.85 | 3.04 | OK | < LOD | | Zn | 0 | -10 | 10 | -17.24 | 5.79 | OK | < LOD | | W | 0 | -60 | 60 | -7.16 | 25.51 | OK | < LOD | | Cu | 0 | -20 | 20 | -0.74 | 11.47 | OK | < LOD | | Ni | 0 | -70 | 70 | -3.66 | 18.81 | OK | < LOD | | Co | 0 | -50 | 50 | 10.52 | 11.75 | OK | < LOD | | Fe | 0 | -50 | 50 | 24.42 | 24.31 | OK | < LOD | | Mn | 0 | -100 | 300 | -4.34 | 26.65 | OK | < LOD | | Cr | 0 | -120 | 120 | -1.18 | 10.03 | OK | < LOD | | V | 0 | -160 | 160 | -1.44 | 8.2 | OK | < LOD | | Ti | 0 | -700 | 700 | 20.26 | 19.81 | OK | < LOD | | Sc | 0 | -100 | 100 | -0.67 | 2.84 | OK | < LOD | | Ca | 0 | -2000 | 2000 | 8.49 | 18.84 | OK | < LOD | | K | 0 | -3000 | 3000 | 22.65 | 59.66 | OK | < LOD | | S | 0 | -140000 | 140000 | 54.49 | 252.46 | OK | < LOD | | RCRA | Expected** | Low | High | Measured | Err | Pass | <lod?< th=""></lod?<> | |---------------|------------|-----|------|----------|---------|------|-----------------------| | Ba | | | | 617.83 | 43.17 | | | | Cs | | | | 64.1 | 9.73 | | | | Te | | | | 93.04 | 34.99 | | | | Sb | 0 | 0 | 0 | 27.56 | 12.3 | | | | Sn | 0 | 0 | 0 | 71.83 | 15.91 | | | | Cd | 500 | 400 | 600 | 513.41 | 13.01 | ОК | | | Ag | 500 | 400 | 600 | 515.93 | 12.21 | ОК | | | Pd | | | | 22.32 | 8.89 | | | | Mo | | | | -0.98 | 4.92 | | | | Zr | | | | 237.69 | 8.29 | | | | Sr | NA | | | 189.08 | 7.31 | | | | U | | | | 4.56 | 8.72 | | | | Rb | NA | | | 81.67 | 5.94 | | | | Th | | | | 15.37 | 7.86 | | | | Pb | 500 | 400 | 600 | 486.81 | 27.88 | ok | | | Se | 500 | 400 | 600 | 508.08 | 20.02 | ok | | | As | 500 | 400 | 600 | 442.62 | 26.36 | oĸ | | | Hg | NA | | | 5.37 | 8.26 | | | | Au | | | | -4.51 | 15.21 | | | | Zn | NA | | | 36.41 | 14.1 | | | | W | | | | 57.53 | 45.16 | | | | Cu | NA | | | 38.47 | 20.27 | | | | Ni | NA | | | 54.52 | 36.45 | | | | Co | NA | | | 210.39 | 148.51 | | | | Fe | NA | | | 49329.11 | 539.57 | | | | Mn | NA | | | 827.95 | 102.53 | | | | Cr (variable) | 500 | | | 400.56 | 32.19 | | | | V | | | | 132.82 | 52.18 | | | | Ti | | | | 3854.77 | 167.53 | | | | Sc | | | | 28.81 | 47.17 | | | | Ca | | | | 31567.24 | 513.3 | | | | K | | | | 19100.98 | 578.1 | | | | S | | | | 1934.88 | 1053.81 | | | | DL1a | Certified | Low | High | Measured | Err | Pass | <lod?< th=""></lod?<> | |------|-----------|-----|------|----------|--------|------|-----------------------| | Ba | ND | | | 214.82 | 33.44 | | | | Cs | ND | | | -1.08 | 7.71 | | | | Te | ND | | | -10.6 | 27.91 | | | | Sb | ND | | | -7.93 | 9.07 | | | | Sn | ND | | | 4.64 | 11.55 | | | | Cd | ND | | | -4.42 | 4.93 | | | | Ag | ND | | | -4.45 | 3.57 | | | | Pd | ND | | | -4.09 | 5.75 | | | | Mo | ND | | | 4.99 | 4.17 | | | | Zr | ND | | | 90.97 | 4.63 | | | | Sr | ND | | | 13.83 | 2.27 | | | | U | 116 | 93 | 140 | 113.78 | 10.99 | ОК | | | Rb | ND | | | 94.05 | 5.97 | | | | Th | 76 | 60 | 92 | 66.57 | 7.24 | ОК | | | Pb | ND | | | 58.15 | 9.12 | | | | Se | ND | | | -11.50 | 2.71 | | | | As | ND | | | -2.38 | 6.61 | | | | Hg | ND | | | 5.2 | 5.4 | | | | Au | ND | | | 0.8 | 4.1 | | | | Zn | ND | | | 23.25 | 10.13 | | | | W | ND | | | 15.20 | 31.72 | | | | Cu | ND | | | 9.45 | 13.95 | | | | Ni | ND | | | 19.13 | 23.59 | | | | Co | ND | | | 70.48 | 44.85 | | | | Fe | 9000 | | | 5524.24 | 154.44 | | | | Mn | ND | | | 49.0 | 37.2 | | | | Cr | ND | | | 47.3 | 12.6 | | | | V | ND | | | 28.4 | 20.6 | | | | Ti | 900 | | | 949.3 | 63.4 | | | | Sc | ND | | | 7.0 | 9.7 | | | | Ca | 3000 | | | 2401.7 | 120.0 | | | | K | 2000 | | | 23718.5 | 403.9 | | | | S | 4000 | | | 1374.4 | 502.2 | | | #### **Certificate of Calibration** Model: XL3t 500 Software: 8.4J.14 Escale: Shaping 20 7.31 Source: Tube Date of Q.C.: 22-January-2021 Inspector: Dave S Calibration type: Empirical Serial Number: 58027 Resolution: Shaping 20 178.1 60 second analysis time per filter, all switched on Elements that are in BLUE BOLD should be detected Elements not in BLUE BOLD need not be detected but record if present | TILL4 | Certified | Low | High | Measured | Err | Pass | <lod?< th=""></lod?<> | |-------|-----------|---------|--------|----------|--------|------|-----------------------| | Ba | 395 | 195 | 610 | 448.11 | 39.28 | OK | 1LOD: | | Cs | 12 | -300 | 300 | 37.27 | 8.94 | OK | | | Te | NR | -300 | 300 | 48.51 | 32.21 | OK | | | Sb | 1 | -100 | 100 | 16.94 | 10.56 | OK | | | Sn | NR | -100 | 100 | 55.54 | 13.64 | OK | | | Cd | NR | -70 | 70 | 1.7 | 5.73 | OK | < LOD | | Ag
| NR | -50 | 50 | 0.15 | 4.18 | OK | < LOD | | Pd | NR | -60 | 60 | -5.62 | 6.48 | OK | < LOD | | Мо | 16 | 0 | 30 | 11.88 | 5.09 | OK | | | Zr | 385 | 185 | 585 | 402.11 | 9.5 | OK | | | Sr | 109 | 50 | 150 | 115.98 | 5.48 | OK | | | U | 5 | -20 | 20 | -2.79 | 9.39 | OK | < LOD | | Rb | 161 | 100 | 210 | 161.85 | 7.40 | OK | | | Th | 17.4 | -40 | 70 | 50.73 | 7.38 | OK | | | Pb | 50 | 28 | 70 | 31.37 | 8.81 | OK | | | Se | NR | -15 | 15 | -9.89 | 3.98 | ОК | < LOD | | As | 111 | 80 | 140 | 114.35 | 10.49 | OK | | | Hg | NR | -15 | 15 | 2.5 | 8.2 | ОК | < LOD | | Au | | -10 | 10 | 4.7 | 5.6 | ОК | < LOD | | Zn | 70 | 45 | 95 | 45.14 | 13.63 | OK | | | W | 204 | 130 | 270 | 222.50 | 50.02 | OK | | | Cu | 237 | 200 | 280 | 236.48 | 26.83 | OK | | | Ni | 17 | -50 | 90 | 31.02 | 30.51 | OK | < LOD | | Со | 8 | -300 | 300 | 41.28 | 117.09 | OK | < LOD | | Fe | 39700 | 29700 | 49700 | 35744.54 | 430.61 | OK | | | Mn | 490 | 300 | 600 | 384.3 | 72.6 | OK | | | Cr | 53 | -50 | 150 | 52.9 | 21.6 | OK | | | V | 67 | -150 | 250 | 77.7 | 48.1 | OK | | | Ti | 4840 | 3870 | 5808 | 4669.3 | 162.0 | OK | | | Sc | 10 | -150 | 150 | 12.4 | 23.6 | OK | < LOD | | Ca | NR | | | 7323.6 | 260.9 | | | | K | NR | | | 25681.0 | 618.5 | | | | S | 800 | -130000 | 130000 | 1292.8 | 867.4 | OK | < LOD | | NIST2780 | Certified | Low | High | Measured | Err | Pass | <lod?< th=""></lod?<> | |----------|-----------|-------|-------|----------|--------|------|-----------------------| | Ba | 993 | 844 | 1142 | 1056.68 | 44.82 | OK | | | Cs | 13 | -10 | 100 | 70.44 | 9.64 | OK | | | Te | | 0 | 150 | 141.75 | 34.8 | OK | | | Sb | 160 | 100 | 250 | 173.39 | 12.61 | OK | | | Sn | | -20 | 100 | 80.01 | 14.78 | OK | | | Cd | 12.1 | 5 | 30 | 15.28 | 6.29 | OK | | | Ag | 27 | 0 | 120 | 31.88 | 5.19 | OK | | | Pd | | -15 | 15 | -0.14 | 7.04 | OK | < LOD | | Mo | 11 | 0 | 20 | 9.02 | 5.04 | OK | | | Zr | 176 | 131 | 220 | 183.95 | 7.98 | OK | | | Sr | 217 | 195 | 239 | 229.58 | 8.09 | OK | | | U | 4 | -20 | 20 | 11.25 | 11.27 | OK | < LOD | | Rb | 175 | 140 | 210 | 162.39 | 8.29 | OK | | | Th | 12 | 0 | 55 | 48.17 | 19.46 | OK | | | Pb | 5770 | 4904 | 6635 | 5148.08 | 74.58 | OK | | | Se | 5 | -10 | 10 | -14.68 | 5.98 | OK | < LOD | | As | 48.8 | 0 | 90 | 1.74 | 57.24 | OK | < LOD | | Hg | | -15 | 15 | 1.6 9.4 | | OK | < LOD | | Au | | -20 | 20 | 2.1 | 10.5 | OK | < LOD | | Zn | 2570 | 1800 | 3340 | 2100.81 | 60.42 | OK | | | W | | -100 | 100 | 56.17 | 59.16 | OK | < LOD | | Cu | 215.5 | 151 | 280 | 179.58 | 27.06 | OK | | | Ni | | -100 | 100 | 13.87 | 33.10 | OK | < LOD | | Co | | -200 | 200 | 81.65 | 105.37 | OK | < LOD | | Fe | 27840 | 22272 | 33408 | 25021.21 | 382.99 | OK | | | Mn | 462 | 415 | 508 | 420.4 | 77.5 | OK | | | Cr | | 0 | 70 | 57.6 | 19.7 | ОК | | | V | 268 | 150 | 350 | 264.7 | 53.9 | ОК | | | Ti | 6990 | 6291 | 7689 | 6707.9 | 175.2 | ОК | | | Sc | 23 | 3 | 33 | 6.1 | 13.3 | OK | < LOD | | Ca | 1950 | 1000 | 3000 | 1705.4 | 162.3 | OK | | | K | 33800 | 30420 | 37180 | 34015.2 | 631.6 | OK | | | S | 12630 | 5000 | 15000 | 11083.6 | 1312.2 | OK | | This certificate is issued in accordance with Thermo Fisher Scientific factory specifications. The measurements were found to be within specification limits at the time of calibration. This certificate is valid for 2 years from the date of calibration. Standards are traceable to National Institute of Standards & Technology (NIST) standards. ** - Not Certified Dave Scattergood Service Manager ## APPENDIX 5 BORE LOGS | R | A | M | В | d | L | L | |---|---|---|---|---|---|---| | | | | | | | | | | | | | | | | COMPLETED <u>7/6/21</u> | | | | |--------|----------|-----------------|---------------|--------------|-------------|--------------------------|---|--------------------------------------|-----------------------------|-------------------------| | | | | | | | | Pty Ltd | 0.1m | | | | | LOGGED BY TJF | | CHECKED BY SM | | 10. | TES | <u> </u> | | | | | I | | <u> </u> | T | | Method | Water | Well
Details | | Depth
(m) | Graphic Log | Classification
Symbol | Material Des | cription | Samples
Tests
Remarks | Additional Observations | | _ | | | 847 | | | | FILL; silty CLAY, dark brown, soft, minor moist | sand and gravels, high plasticity, | GW01_0.0, XR
93ppm | | | | | | | | \bowtie | | OLAY wateral P. Life | -Mi E hi l l l l l l l l l | GW01_0.1, XR
229ppm | | | | _ | | | | | | CLAY; natural, light brown with orange m | ottles, firm, high plasticity, moist | GW01_0.2, XR
355ppm | | | | SWLI | | 3 | | | | | | GW01_0.3, XR
399ppm | | | | SV | | | 1 | | | | | GW01_0.4, XR
101ppm | | | | | | 846 | | | | | | GW01_0.5, XR
97ppm | | | | | | 3 | | | | OLAN, we translate our brown bight of estimates | it is bound associate | GW01_1.0, XR
123ppm | it- | | | | | | | | | CLAY; natural, orange-brown, high plastic | city, nard, moist | | | | | | | } | | | | | | | | | | | | \$ | 2 | | | | | GW01_2.0, XR | IF | | | | | 845 | | | | | | 280ppm | | | | | | K | | | | | | | | | | | | 4 | | | | | | | | | | | | | | | | CLAY; natural, brown, very hard, minor grands (weathered bedrock) | ravels, dry, low plasticity, minor | | | | | | | Ž | 3 | | | | | GW01_3.0, XR | F | | | | | 844 | | | | | | 504ppm | :] | | | | | | | | | | | | | 4 | | | | | GW01_4.0, XR
308ppm | F | | | | : : | 843 | | | | | | 308ppm | | | | | : 目: | } | | | | | | | | | | | :: : | :] | | | | | | | | | | | ::目: | ; | | | | | | | | | | | [::目: | :] | 5 | | | | | | | | | | ::目: | 842 | | | _ | CLAY; natural, with silt, brown, soft, low p | lasticity, moist to wet | | | | | _ | [::]]: | :] | | | | | | | | | | <u> </u> | ::昌: | : | | | | | | | | | | | :: : | : | | | | | | | | | | | : - | 1 | 6 | | | | | | | | | | | · <u>84</u> 1 | | | | | | | | | | | ::目: | .; | | | | | | | | | | | [::] [: | | | | | | | | | | | | ::目: | :] | | | | | | | | | | | :: : | | 7 | | | | | | | | | | | 840 | | | | Borehole GW01 terminated at 7m | | | | | | | | <u> </u> | 8 | | | | | | | | RA | M | В | d | LL | | |----|---|---|---|----|--| | | | | | | | | SRLUNG CONTRACTOR Strittacore Py Ltd SLOPE 90° BEARING — COUPPINT Scrid Flight Auger HOLE LOCATION 721525.5936. 8058875.08N LOGGED BY TJF CHECKED BY SM. ONE SIZE OF TJF CHECKED BY SM. ONE SIZE OF TJF CHECKED BY SM. Additional Cheen relation Recommendation of the properties | DATE | STAR | TED | 7/ | 6/21 | | | COMPLETED 7/6/21 | R.L. SURFACE 843.612 | | DATUM m mAHD | |--|-----------------|--------------|-----------------|--------|---------|-------------|--------------------------|--|---------------------------------------|----------------|-------------------------| | NOLE SIZE 0.1m LOGGED BY _TJF CHECKED BY _SM | | | | | | | | | | | | | Material Description Samples Tests Additional Observations Samples Tests Additional Observations Samples Tests Additional Observations Samples Tests Additional Observations Samples Tests | QUIF | MENT | Sc | olid F | light A | Auger | | | HOLE LOCATION _72152 | 5.593E, 605867 | 5.09N | | Meterial Description Samples Tests Remarks Additional Observations Fill.; ally SAND, brown, loose, make, low plasticity, soft OLAY, natural, brown, model, with sands and minor gravel, high plasticity, wet CLAY, natural, brown with orangedgrey motiling, soft, high plasticity, wet CLAY, natural, light brown, with allts, soft, low plasticity, model-wet CLAY, natural, light brown, with allts, soft, low plasticity, model-wet Scripting GWK 2.0, XFP GWG 2.0, XFP 4.25pm GWG 3.0, XFP GWG 3.0, XFP 4.25pm | OLE | SIZE | 0.1 | m | | | | | LOGGED BY TJF | | CHECKED BY SM | | FILL sally SAND, brown, loose, meet, low pleaticity alls, notates, medium grained
sand; more graved, high plasticity, soft GYPW SWS 0.1 XPR SWS 0.2 XP | OTE | s | | | | | | | | | | | grained sends and minor gravel, high plasticity, soft CLAY, natural, brown, moist, high plasticity, soft CLAY, natural, brown, moist, high plasticity, soft GW3, 0.2, XRF 385,ppm GW3, 0.2, XRF 214,ppm GW3, 0.4, XRF 214,ppm GW3, 0.4, XRF 214,ppm GW3, 0.4, XRF 214,ppm GW3, 0.5, XRF 385,ppm GW3, 0.5, XRF 214,ppm 214,pp | Method
Water | Wel
Detai | | | | Graphic Log | Classification
Symbol | Material De | escription | Tests | Additional Observations | | CLAY, natural, brown, most, high plasticity, soft CLAY, natural, brown, most, high plasticity, soft CLAY, natural, brown with orange-grey motiling, soft, high plasticity, wet CLAY, natural, light brown, with stits, soft, low plasticity, moist-wet CLAY, natural, light brown, with stits, soft, low plasticity, moist-wet CLAY, natural, light brown, with stits, soft, low plasticity, moist-wet Borehole GW02 terminated at 4m Borehole GW02 terminated at 4m | | | | | | | | | ow plasticity silts, rootlets, medium | | F | | CLAY; natural, brown, moist, high plasticity, soft CLAY; natural, brown, moist, high plasticity, soft CLAY; natural, brown with crange-grey motiling, soft, high plasticity, wet CLAY; natural, brown with crange-grey motiling, soft, high plasticity, wet CLAY; natural, light brown, with sits, soft, low plasticity, moist-wet CLAY; natural, light brown, with sits, soft, low plasticity, moist-wet CW03_20, XRF 4/Zippm CW03_30, XRF 4/Zippm Borehole CW02 terminated at 4m Borehole CW02 terminated at 4m | | | | | | | | CLAY; natural, brown, moist, with sands | s and minor gravel, high plasticity, | GW03_0.1, XRI | F | | GWGG 0.3 ARE APPRING GWGG 0.5 | | H: | . 8 | 343 | | | | | icity soft | GW03_0.2, XRI | F | | Solve CLAY, natural, brown with orangeigrey mottling, soft, high plasticity, well class 1.0 xRF (3/18, 0.2 | | | | | | | | 52 tt, matara, 210tt, moles, mgm place | iony, con | GW03 0.3, XRI | F | | CLAY, natural, brown with crange/grey motiling, soft, high plasticity, wet CLAY, natural, light brown, with sitts, soft, low plasticity, moist-wet CLAY, natural, light brown, with sitts, soft, low plasticity, moist-wet GW03_20, XRF 422ppm GW03_30, XRF 428ppm GW03_30, XRF 428ppm GW03_30, XRF 428ppm Fig. 10 ppm plasticity and plasticity are plasticity as a second plasticity and plasticity are plasticity and plasticity are plasticity as a second plasticity and plasticity are are plasticity and are plasticity and plasticity are plasticity are plasticity are plasticity are plasticity are plasticity and plasticity are plasticity are plasticity are plasticity are plasticity are pl | | - :: | | | 1 | | | | | GW03_0.4, XRI | F | | CLAY; returnel, brown with orange-grey mottling, soft, high plasticity, wet CLAY; returnel, light brown, with silts, soft, low plasticity, moist-wet CLAY; returnel, light brown, with silts, soft, low plasticity, moist-wet CLAY; returnel, light brown, with silts, soft, low plasticity, moist-wet GW03_10_XRF 422ppm GW03_10_XRF 422ppm GW03_3.0_XRF 426ppm Borehole GW02 terminated at 4m | SW | | | | | | | | | GW03_0.5, XRI | F | | CLAY; natural, brown with orange/grey motiting, soft, high plasticity, wet CLAY; natural, light brown, with silts, soft, low plasticity, moist-wet CLAY; natural, light brown, with silts, soft, low plasticity, moist-wet GW03_20, XRF_422ppm GW03_30, XRF_426ppm Borehole GW02 terminated at 4m | | | | | | | | | | GW03_1.0, XRI | F | | GW03_2.0_XRF 422ppm GLAY; natural, light brown, with silts, soft, low plasticity, moist-wet GW03_2.0_XRF 422ppm GW03_3.0_XRF 425ppm GW03_3.0_XRF 425ppm Borehole GW02 terminated at 4m | | :: <u> </u> | ::
R | 342 | | | | CLAY; natural. brown with orange/grev | mottling, soft, high plasticity, wet | oo ippiii | | | CLAY: natural, light brown, with silts, soft, low plasticity, moist-wet GW03 3.0, XRF 428ppm Borehole GW02 terminated at 4m 839 5 837 7 7 | | : | | | | | | , , , | 5, ,g | | | | CLAY: natural, light brown, with silts, soft, low plasticity, moist-wet GW03 3.0, XRF 428ppm Borehole GW02 terminated at 4m 839 5 837 7 7 | | | | | 2 | | | | | GW03 2.0, XRI | F | | 839 | l v | | | | | | | | | | | | Borehole GW02 terminated at 4m | - | T∷≣ | | | | | | CLAY; natural, light brown, with silts, so | oft, low plasticity, moist-wet | | | | Borehole GW02 terminated at 4m | | | | 841 | | | | | | | | | 839 - 5 - 6 - 7 - 7 - 7 7 | | | | _ | | | | | | | | | 839 Borehole GW02 terminated at 4m 839 - 5 - 6 - 6 - 7 - 7 - 7 7 7 7 | | | | | 3 | | | | | GW03_3.0, XRI | F | | 839 | | | | | | | | | | 426ppm | | | 839 | | | | | | | | | | | | | 839 | | | :: ₈ | 340 | | | | | | | | | 839 | | : | | | | | | | | | | | 839 | | | | | 4 | | | | | | | | 838 - 6
837 - 7
7 | | | | | 4 | | | Borehole GW02 terminated at 4m | | | | | 838 - 6
837 - 7
7 | | | | | _ | | | | | | | | 838 | | | 8 | 39 | _ | | | | | | | | 838 | | | | | 4 | | | | | | | | 837 | | | | | 5 | | | | | | | | 837 | | | | | 4 | | | | | | | | 837 | | | | | 4 | | | | | | | | 837 | | | 8 | 38 | 4 | | | | | | | | 837 | | | | | 4 | | | | | | | | | | | | | 6 | | | | | | | | | | | | | _ | | | | | | | | | | | | | 4 | | | | | | | | | | | 8 | 37 | 4 | | | | | | | | | | | | | _ | | | | | | | | 836 _ | | | | | 7 | | | | | | | | 836 _ | 8 | 36 | RAMBOLL | ١ | |---------|---| | KAMBULL | | | PR | OJE | CT NL | JMBER | 318 | 00119 | 3 | | PROJECT LOCATION _C | aptains Flat, NS | W | |--------|----------|----------------|--------------|--------------|-------------|--------------------------|---|---------------------------------------|---------------------------------|--------------------------------------| | | | | | | | | COMPLETED 7/6/21 | | | | | DRI | LLI | NG C | ONTRAC | CTOR | Stra | tacore | Pty Ltd | SLOPE 90° | I | BEARING | | | | | | | | | | | | | | HO | LE S | SIZE | 0.1m | | | | | LOGGED BY TJF | | CHECKED BY SM | | NO. | TES | | | <u> </u> | <u> </u> | I | T | T | | | | Method | Water | Well
Detail | I RL | Depth
(m) | Graphic Log | Classification
Symbol | Material Des | scription | Samples
Tests
Remarks | Additional Observations | | | | M | 845 | | | | FILL; silty CLAY, dark brown, soft, minor moist | sand and gravels, high plasticity, | GW02_0.0, XRF
518ppm, D1 XRI | | | | | | | | | | FILL; CLAY, brown, with minor gravels a | nd sand, firm, high plasticity, moist | 453ppm
GW02_0.1, XRF | Minor apphalt and congrete fragments | | | | | | | | | CLAY; natural, light brown, with minor gr | avel, dry, high plasticity, hard | 8791ppm
GW02_0.2, XRF | : | | | | | \mathbb{N} | _ | | | | | 2372ppm
GW02_0.3, XRF | : | | | | | | 1 | | | | | 7519ppm
GW02_0.4, XRF | : | | | | | 844 | _ | | | | | 1698ppm
GW02_0.5, XRF | : | | | | | \Im | _ | | | CLAY; natural, red-brown, high plasticity | , hard, dry | 5188ppm
GW02_1.0, XRF | : | | | | | | _ | | | | | 1972ppm | | | | | | | _ | | | | | | | | | <u>¥</u> | | 843 | 2 | | | | | GW02_2.0, XRF
2481ppm | : | | | SWL | | × 543 | _ | | | | | 240 IPPIII | | | | 0, | | | - | | | | | | | | | | | | - | | | CLAY; natural, brown, very hard, minor g
sands (weathered bedrock) | ravels, dry, low plasticity, minor | | | | | | | | _ | | | Sands (Wednered Bedrook) | | | | | | | . | 842 | 3 | | | | | GW02_3.0, XRF
284ppm | : | | | | | :: | - | | | | | | | | | | | | - | | | | | | | | | | | | - | | | | | | | | | | k 🗏 | | - | | | | | | | | | | | 841 | 4 | | | | | | | | | | | | - | | | | | | | | | ▼ | | | - | | | | | | | | | _ | :` = | | - | | | CLAY; light brown, with silts, soft, low pla | asticity, moist-wet | | | | | | | | - | | | | | | | | | | | 840 | 5 | | | | | | | | | | | | - | | | | | | | | | | ŀ:ˈ = | | - | | | | | | | | | | | | - | | | | | | | | | | | | - | | | | | | | | | | | 839 | 0 | | | | | | | | | | | | - | | | | | | | | | | | | - | | | Parahala CIMO2 tarminated at 6 5mg | | | | | | | | | - | | | Borehole GW03 terminated at 6.5m | | | | | | | | | -
7 | - | | | | | | | | | | 838 | ' | - | | | | | | | | | | | - | | | | | | | | | | | | - | 1 | | | | | | | | | | | - | 1 | | | | | | | | | | | 8 | 1 | | | | | | | | Λ | M | | de | | | |---|---|-----|---|----|---|---| | 5 | | UYU | D | U | 6 | _ | | | | | | | | | | DR | RILLI | NG CON | ITRA | CTOR . | Stra | tacore | Pty Ltd | R.L. SURFACE 843.287 SLOPE 90° | I | BEARING | |------------|----------|-----------------|--|--------------------------------------|-------------|--------------------------|---|--|---|-------------------------| | Ю | | SIZE 0 | | _ | | _ | - | HOLE LOCATION _72159
LOGGED BY _TJF | | | | ואופוו וסם | Water | Well
Details | RL
(m) | Depth (m) | Graphic Log | Classification
Symbol | Material [| Description | Samples
Tests
Remarks | Additional Observations | | | ▼I1MS ▼I | | <u>843</u>
<u>842</u>
<u>841</u> | - 1
- 2
- 2
- 3 | | | FILL; silty SAND, dark brown, loose, r moist, minor gravels and rootlets pres CLAY; natural, light brown with orange CLAY; natural, light brown, with silt, see | ent emottles, firm, high plasticity, moist | GW04_0.0, XRF
46ppm
GW04_0.1, XRF
2420ppm
GW04_0.2, XRF
3534ppm
GW04_0.3, XRF
903ppm
GW04_0.5, XRF
40ppm
GW04_1.0, XRF
67ppm | | | | | | <u>838</u>
<u>83</u> 7 | 5
-
-
-
6
-
-
7 | | | | | | | PAGE 1 OF 1 | R | A | M | В | U | L | L | |---|---|---|---|---|---|---| | | | | | | | | BOREHOLE / TEST PIT 318001193 CAPTAINS
FLAT JUNE 2021.GPJ GINT STD AUSTRALIA.GDT 19/8/21 | CL | IENT | Γ_Depa | ırtmer | nt of R | egiona | ıl NSW | 1 | PROJECT NAME _Capta | ins Flat Lead Ma | nagement Plan | |----------|---------------|-----------------|--------------|------------------|-------------|--------------------------|--|--|--|---------------------------| | | | | | | | | | | Captains Flat, NS | W | | DR
EQ | ILLII
UIPI | NG CON | ITRA
Hand | CTOR
Auger | Stra | tacore
I Flight | COMPLETED 8/7/21 Pty Ltd Auger | SLOPE 90° HOLE LOCATION 72158 | I
1.24E,6058874.2 | BEARING
257N | | | TES | | | | | | | | | | | Method | Water | Well
Details | RL
(m) | Depth
(m) | Graphic Log | Classification
Symbol | Material Desc | cription | Samples
Tests
Remarks | Additional Observations | | | SWL | | 842 | -
-
-
1 | | | FILL; silty SAND, dark brown, loose, med moist, minor gravels and rootlets present CLAY; natural, light brown with orange model. CLAY; light brown, with silt, soft, low plast | ottlings, firm, high plasticity, moist | 63ppm
GW05_0.1, XRF
148ppm
GW05_0.2, XRF
173ppm
GW05_0.3, XRF
167ppm
GW05_0.4, XRF
7ppm
GW05_0.5, XRF | No observed contamination | | | <u> </u> | | 841 | -
-
-
2 | | | | | 7ppm
GW05_1.0, XRF
45ppm | No observed contamination | | | | | 840 | 3 | | | Borehole GW05 terminated at 3m | | | | | | | | 839 | -
-
4 | | | | | | | | | | | 838 | -
-
5 | | | | | | | | | | | 837 | -
-
-
6 | | | | | | | | | | | 836 | -
-
-
7 | | | | | | | | | | | 835 | -
-
- | | | | | | | | R | A | M | В | d | L | L | |---|---|---|---|---|---|---| | | | | | | | | | | | T <u>Depa</u> | | | | _ | I | | | anagement Plan
SW | |---|-------|-----------------|---------------|--------------|-------------|--------------------------|--|-----------------------------------|--|-------------------------| | DA | TE S | STARTE | E D _8 | /7/21 | | | COMPLETED 8/7/21 | R.L. SURFACE 845.889 | | DATUM _ m mAHD | | DR | RILLI | NG CON | NTRAC | CTOR | Stra | tacore | Pty Ltd | SLOPE 90° | | BEARING | | | | | | | | | | | | 9.036N | | | | |).1m | | | | | LOGGED BY TJF | | CHECKED BY SM | | NC | TES | <u> </u> | | | | | | | | | | Method | Water | Well
Details | RL
(m) | Depth
(m) | Graphic Log | Classification
Symbol | Material Desi | | Samples
Tests
Remarks | Additional Observations | | | | | | - | | | FILL; silty SAND, dark brown, loose, med
moist, minor gravels and rootlets present
Silty CLAY; natural, dark brown, firm, high | | GW06_0.0, XR
68ppm, D2 XRI
46ppm | F | | | | | | - | | | CLAY; natural, light brown-grey with orange moist | , , | GW06_0.1, XR
129ppm
GW06_0.2, XR | | | | | | <u>84</u> 5 | _ | | | | | 210ppm
GW06_0.3, XRI
63ppm | | | | | | | 1 | | | CLAY; natural, brown, hard-very hard, mil
minor sands | nor gravels, dry, low plasticity, | GW06_0.4, XR
15ppm
GW06_0.5, XR | | | | | | | - | | | | | 19ppm
GW06_1.0, XRI
14ppm | F | | | SWLI | | | - | | | | | | | | | S | | <u>84</u> 4 | 2 | | | | | | | | | | | | - | | | | | | | | | | | | - | | | | | | | | | | | 843 | <u>3</u> | | | | | | | | | | | .] | - | | | | | | | | | | | | - | | | | | | | | /21 | _ | | 842 | _ | | | | | | | | OT 19/8 | _ | | .] | 4 | | | CLAY; natural, light brown, with silt, soft, l | ow plasticity, moist-wet | | | | ALIA.GI | | | .] | - | | | | | | | | AUSTR | | | | - | | | | | | | | AT STD | | | 841 | <u>5</u> | | | | | | | | 3PJ GII | | | | - | | | | | | | | 2021.0 | | | | - | | | | | | | | TY TO IN I | | | 840 | 6 | | | | | | | | INS FL | | | | _ | | | Borehole GW06 terminated at 6m | | | | | CAPTA | | | | - | | | | | | | | 3001193 | | | 839 | _ | | | | | | | | PIT 318 | | | | 7 | | | | | | | | BOREHOLE / TEST PIT 318001193 CAPTAINS FLAT JUNE 2021.GPJ GINT STD AUSTRALIA.GDT 19/8/2 | | | | - | | | | | | | | EHOLE | | | | - | | | | | | | | BOR | | | 838 | 8 | | | | | | | PAGE 1 OF 2 | R | A | M | В | d | L | L | |---|---|---|---|---|---|---| | | | | | | | | BOREHOLE / TEST PIT 318001193 CAPTAINS FLAT JUNE 2021.GPJ GINT STD AUSTRALIA.GDT 19/8/21 | FLL sandy CLAY rown, high plasticity, soft, modium grained sands, mosts, modific pressure full control of the c | | | | | | | | _ | ROJECT NAME Captair | | | |--|--------|-------|-------------|---------------|---|-------------|--------------------------|---|-----------------------------|--------------------------|-------------------------| | SINCE SO! BEARING HOLE LOCATION 722012 STTE 505934.143NN HOLE SIZE O, CHECKED BY SM Additional Classivotions CHECKED BY SM CHECKED BY SM Additional Classivotions Track Remarks. Additional Classivotions Fitti samey CLAY, individual brown, high pleasitory, sort, modulus graved awards, modul. OCCUPY CLAY, restand, brown, high pleasitory, firm-hard, dry Sincy CLAY, restand, dark brown, high pleasitory, sort, model. Sincy CLAY, restand, dark brown, high pleasitory, sort, model. Sincy CLAY, restand, dark brown, high pleasitory, sort, model. Sincy CLAY, restand, dark brown, high pleasitory, sort, model. Sincy CLAY, restand, dark brown, high pleasitory, sort, model. Sincy CLAY, restand, dark brown, high pleasitory, sort, model. Sincy CLAY, restand, dark brown, high pleasitory, sort, model. Sincy CLAY, restand, dark brown, high pleasitory, sort, model. Sincy CLAY, restand, dark brown, high pleasitory, sort, model. Sincy CLAY, restand, dark brown, high pleasitory, sort, model. Sincy CLAY, restand, dark brown, high pleasitory, sort, model. Sincy CLAY, restand, dark brown, high pleasitory, sort, model. Sincy CLAY, restand, dark brown, high pleasitory, sort, model. CONTY 3.0, MPC 3.007 | | | | | | | | | | | | | HOLE SIZE D_1m | | | | | | | | | | | | | HOLE SEE | | | | | | | | | | | | | Moterial Description The Company of Secretary CLAV brown, high plasticity, soft, medium grained sends, most, plant in the company of com | | | | | | | | | | | | | Material Description RL Description RL Description RL Samples Foundation RL Samples Foundation RL Samples Foundation Full Sample CLAY brown, high plasticity, soft, modulum grained sample, model. CAY: related, brown, high plasticity, firm-found, dry CAY: related, brown, high plasticity, firm-found, dry CAY: related, brown, high plasticity, firm-found, dry Silly CLAY: related, brown, high plasticity, soft, model m | | | | .1m | | | | LOC | GED BY IJF | | CHECKED BY SM | | FLL sandy CLAY, forour, high pleaticity, and, medium grained sands, mosts, CMO, 3.1, APP (CLAY, lught brown-orange, low plasticity, fine sands, hard, dry 17 (22, APP 17 (22, APP 17 (23, | INO | ILC | ,
 | | | | | | | | | | Sity CLAY, natural, dark brown, high plasticity, soft, motes Sity CLAY, natural, dark brown, high plasticity, soft, motes Sity CLAY, natural, dark brown, high plasticity, soft, motes Sity CLAY, natural, dark brown, high plasticity, soft, motes Sity CLAY, natural, dark brown, high plasticity, soft, motes Sity CLAY, natural, dark brown, high plasticity, soft, motes GWO7 2.0, XSF 558, pp. 1895 Sity CLAY, natural, dark brown, high plasticity, soft, motes GWO7 3.0, XSF 5770 pp. 1895 Sity CLAY, natural, dark brown, high plasticity, soft, motes GWO7 3.0, XSF 5770 pp. 1895 Sity CLAY, natural, dark brown, high plasticity, soft, motes GWO7 3.0, XSF 5770 pp. 1895
Sity CLAY, natural, dark brown, high plasticity, soft, motes GWO7 3.0, XSF 5770 pp. 1895 Sity CLAY, natural, dark brown, high plasticity, soft, motes GWO7 3.0, XSF 5770 pp. 1895 Sity CLAY, natural, dark brown, high plasticity, soft, motes GWO7 3.0, XSF 5770 pp. 1895 Sity CLAY, natural, dark brown, high plasticity, firm-hard, dity | Method | Water | | | | Graphic Log | Classification
Symbol | Material Description | | Tests | Additional Observations | | ### FELL sendy CLAY, light brown-range, low plasticity, fine sends, hard, dry | | | X | 1 | | | | | edium grained sands, moist, | 52ppm | | | CLAY; natural, brown, high plasticity, firm-hard, dry CLAY; natural, brown, high plasticity, firm-hard, dry CLAY; natural, dark brown, high plasticity, soft, moist Sity CLAY; natural, dark brown, high plasticity, soft, moist Sity CLAY; natural, dark brown, high plasticity, soft, moist GW07_3.0, XRF 3303ppm Sity CLAY; natural, dark brown, high plasticity, soft, moist GW07_3.0, XRF 3303ppm Sity CLAY; natural, dark brown, high plasticity, soft, moist GW07_5.0, XRF 1664ppm Sity CLAY; natural, dark brown, high plasticity, soft, moist GW07_5.0, XRF 1664ppm Sity CLAY; natural, dark brown, high plasticity, soft, moist GW07_5.0, XRF 1664ppm Sity CLAY; natural, dark brown, high plasticity, soft, moist GW07_5.0, XRF 1664ppm Sity CLAY; natural, dark brown, high plasticity, soft, moist GW07_5.0, XRF 1664ppm | | | | | | \bowtie | | | city, fine sands, hard, dry | GW07_0.1, XR
1552ppm | | | 1 | | | | 857 | _ | | | | | 1578ppm | | | 1. Sity CLAY, natural, dark brown, high plasticity, soft, moist 2. Sity CLAY, natural, dark brown, high plasticity, soft, moist GW07_20_XRF 33959pm GW07_30_XRF 2707ppm GW07_50_XRF 2707ppm GW07_50_XRF 2707ppm GW07_50_XRF 10049pm | | | | } | _ | | | CLAY; natural, brown, high plasticity, firm-hard, o | dry | 1247ppm | | | 1886ppm 1986ppm 1986 | | | | 1 | 1 | | | | | 1509ppm | | | Sity CLAY; natural, dark brown, high plasticity, soft, moist GN07_20_XRF | | | | 1 | - | | | | | 1886ppm | | | Silty CLAY: redural, dark brown, high plasticity, soft, moist GW07_2.0, XRF 33836ppm SSS | | | | 856 | - | | | | | | | | 3399ppm 854 4 854 4 857 6 6 6 6 7 850 | | | | | - | | | Silty CLAY; natural, dark brown, high plasticity, s | oft, moist | | | | 3399ppm 854 4 854 4 857 6 6 6 6 7 850 | | | | | - | | | | | 014/07 00 1/2 | | | 3 GW07 3.0, XRF 2707ppm 853 GW07 5.0, XRF 1664ppm 852 GW07 5.0 XRF 1664ppm | | | | 1 | 2 | | | | | | it- | | 3 GW07 3.0, XRF 2707ppm 853 GW07 5.0, XRF 1664ppm 852 GW07 5.0 XRF 1664ppm | | | | } | - | | | | | | | | 353 S S S S S S S S S S S S S S S S S S | | | | 855 | - | | | | | | | | 353 S S S S S S S S S S S S S S S S S S | | | Ď Š | 1 | - | | | | | | | | 353 S S S S S S S S S S S S S S S S S S | | | | 1 | 3 | | | | | GW07_3.0, XR | IF | | 853 | | | |] | | | | | | 2707ppm | | | 853 | | | | 1 | - | | | | | | | | 853 5 GW07. 5.0, XRF 1664ppm 1 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | | | | <u>1 85</u> 4 | _ | | | | | | | | 853 5 GW07. 5.0, XRF 1664ppm 1 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | | | | | - | | | | | | | | 853 | | |); | ļ | 4 | | | | | | | | 853 | | | | } | - | | | | | | | | 852 GW07.5.0, XRF 1664ppm 1664 | | | [· . [· . | <u>8</u> 53 | - | | | | | | | | 852 GW07.5.0, XRF 1664ppm 1664 | | | | | - | | | | | | | | 850 850 850 850 850 850 850 850 850 850 | | | | } | - | | | | | 014/07 50 1/2 | | | 850 850 850 850 850 850 850 850 850 850 | | | | } | 3 | | | | | GVVU/_5.0, XR
1664ppm | ir | | 851
7
7 | | | 1 1 1 | | - | | | | | | | | 851
7
7 | | | | 852 | - | | | | | | | | 851 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | | | | | - | | | | | | | | 851 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | | | | } | 6 | | | | | | | | 851 ———————————————————————————————————— | | | | | | | | | | | | | | | | · · · | | _ | | | | | | | | | | | | 851 | - | | | | | | | | | | | | | - | | | | | | | | | | | | | 7 | | | | | | | | | | | · · | | - | | | | | | | | | | | | 850 | - | | | | | | | | | | | [] [| | - | | | | | | | | | | | | - | 8 | | | | | | | PAGE 2 OF 2 |--| | 01.15 | | | | 4 - 4 D | | LNOVA | | DDO IFOT MANE | Fl.41 d.N | A A Dian | |--------|-------|---|---------------------|----------------------|-------------|--------------------------|--|--|-----------------------------|-------------------------| | | | | oartmen
MBER | | | | <u>'</u> | PROJECT NAME Captai PROJECT LOCATION C | | | | | | | | | | | COMPLETED 8/7/21 | | - | | | | | | | | | | Pty Ltd | | | | | | | | | | | | Auger | | | | | HOL | E S | SIZE _ | 0.1m | | | | | LOGGED BY TJF | | CHECKED BY SM | | NOT | ES | | | | | | Г | | | | | Method | Water | Well
Details | RL
(m) | Depth (m) | Graphic Log | Classification
Symbol | Material De | scription | Samples
Tests
Remarks | Additional Observations | | | | [.· [. | | - | | | Silty CLAY; natural, dark brown, high pla | sticity, soft, moist (continued) | | | | | | | . <u>84</u> 9
 | - | | | CLAY; natural, light brown, with silt, soft, potentially weathered bedrock | low plasticity, dry, bands of harder | | | | | | | | 9 | | | | | | | | | | | 848 | _ | | | | | | | | | | | | 10 | | | | | | | | | | | ٠ ١ | - | | | | | | | | | | | | 1 <u>1</u> | | | | | | | | | | |

<u>84</u> 6 | _ | | | | | | | | | | | | -
-
1 <u>2</u> | | | | | | | | | | $\cdots \square \cdot$ | | - | | | | | | | | | | | 845 | - | | | | | | | | | | | | 1 <u>3</u> | | | | | | | | | | | 844 | - | | | | | | | | | | | | 1 <u>4</u> | | | | | | | | | | | 843 | _ | | | | | | | | | | | | -
15 | | | | | | | | + | | <u>r </u> | | - | | | Borehole GW07 terminated at 15m | | | | | | | | 842 | _ | | | | | | | | | | | | 16 | | | | | | | PAGE 1 OF 2 | R | A | M | В | d | L | L | |---|---|---|---|---|---|---| | | | | | | | | BOREHOLE / TEST PIT 318001193 CAPTAINS FLAT JUNE 2021.GPJ GINT STD AUSTRALIA.GDT 19/8/21 CLIENT Department of Regional NSW PROJECT NAME Captains Flat Lead Management Plan PROJECT NUMBER 318001193 PROJECT LOCATION Captains Flat, NSW DATE STARTED 8/7/21 COMPLETED 8/7/21 R.L. SURFACE 866.233 DATUM m mAHD DRILLING CONTRACTOR Stratacore Pty Ltd SLOPE 90° _ BEARING _---EQUIPMENT Hand Auger, Solid Flight Auger HOLE LOCATION _721818.20E,6058557.89N HOLE SIZE 0.1m LOGGED BY _TJF _____ CHECKED BY _SM **NOTES** Classification Symbol Graphic Log Samples Material Description Tests Additional Observations Method Remarks Well Depth GW08_0.0, XRF 774ppm GW08_0.1, XRF 2144ppm GW08_0.2, XRF FILL; silty SAND, brown, medium grained, low plasticity silts, minor gravel, moist, dense, rootlets present 866 Sandy CLAY; natural, light brown, medium plasticity, medium grained sands, firm, dry 2364ppm GW08_0.3, XRF CLAY; natural, light brown, high plasticity, firm, dry 1252ppm GW08 0.4, XRF 2386ppm GW08_0.5, XRF 1303ppm GW08_1.0, XRF 1710ppm CLAY; natural, brown-grey with orange mottles, firm-hard, dry, high plasticity GW08_2.0, XRF 1262ppm, D3 XRF 1318ppm Weathered BEDROCK; natural, sandy CLAY, very hard, red, low plasticity, 862 GW08_5.0, XRF 53ppm 861 860 859 PAGE 2 OF 2 | | A | M | | de | | | |----------|---|---|---|----------|----------|---| | K | A | | D | U | L | _ | | | | | | | | | BOREHOLE / TEST PIT 318001193 CAPTAINS FLAT JUNE 2021.GPJ GINT STD AUSTRALIA.GDT 19/8/21 | | | Depa | | | | | | PROJECT NAME _Capta PROJECT LOCATION _C | | anagement Plan | |----------------|-------|-----------------------------|--|--|-------------|--------------------------|---|---|-----------------------------|----------------------------| | DR
EQ
HO | UIPN | NG CON
MENT _
BIZE _0 | TRAC | TOR
Auger | Stra | tacore
Flight | COMPLETED 8/7/21 Pty Ltd Auger | R.L. SURFACE 866.233 SLOPE 90° HOLE LOCATION 721818 | 3.20E,6058557 | DATUM _ m mAHD BEARING 89N | | Method | Water | Well
Details | RL
(m) | Depth
(m) | Graphic Log | Classification
Symbol | Material Desc | cription | Samples
Tests
Remarks | Additional Observations | | | | | 858
857
856
854
853
852 | 9 9 - 10 11 - 12 - 13 13 - 14 - 15 - 15 - 16 | | | Weathered BEDROCK; natural, sandy CL fine sands, dry (continued) Borehole GW08 terminated at 10m | AY, very hard, red, low plasticity, | | | ## **BOREHOLE NUMBER GW09_D** PAGE 1 OF 2 | R | AMBOLL | | |---------|----------------------------|---| | CLIENT | Department of Regional NSW | PROJECT NAME Captains Flat Lead Management Plan | | PRO IEC | T NUMBER 318001193 | PROJECT LOCATION Cantains Flat NSW | DATE STARTED 9/6/21 COMPLETED 9/6/21 R.L. SURFACE 846.559 DATUM m mAHD | | | | CONT | TRAC | TOR | _Stra | tacore | Pty Ltd SLOPE 90° | BE | EARING | |----------------------|------------|---------|-------------|---|-------------|-------------|--------------------------|---|---|-------------------------| | EQ | | | | | | | | ammer HOLE LOCATION _721264 | | | | НО | DLE | SIZE | _0.1 | 1m | | | | LOGGED BY _TJF | CI | HECKED BY SM | | NO | TE | <u></u> | | | | 1 | | | | | | Method | Water | W Det | ell
ails | RL
(m) | Depth (m) |
Graphic Log | Classification
Symbol | Material Description | Samples
Tests
Remarks | Additional Observations | | Air Hammer SFA Metho | TateW MS | | | RL (m) 846 846 844 844 844 884 884 88 | (m) 1 2 3 3 | | | FILL; gravelly CLAY, brown, high plasticity, soft, coarse gravels, fine sands, moist Sandy CLAY; natural, light brown, low plasticity, firm, minor gravels, fine sands, dry CLAY; natural, light brown, high plasticity, hard-very hard, dry, minor sands and gravels BEDROCK; natural, conglomerate, CLAY, brown, with gravels, very hard, dry Becoming softer, moist Becoming very hard (shale), light brown SHALE; light brown | GW09_0.0, XRF 36ppm GW09_0.1, XRF15ppm GW09_0.2, XRF 7ppm GW09_0.3, XRF <lod 14ppm<="" <lod="" gw09_0.5,="" gw09_1.0,="" td="" xrf=""><td></td></lod> | | ## BOREHOLE NUMBER GW09_D PAGE 2 OF 2 | | IT <u>Dep</u>
ECT NU | | | | | | PROJECT NAME Capta | | | |------------------------|----------------------------------|--------------------------|-----------------------------|-------------|--------------------------|--|--|-----------------------------|----------------------------| | DATE
DRILL
EQUIF | START
ING CO
PMENT
SIZE | ED 9 | /6/21
CTOR _
Flight A | Strata | acore
Air Ha | COMPLETED 9/6/21 Pty Ltd ammer | R.L. SURFACE 846.559 SLOPE 90° HOLE LOCATION 72126 | 4.48E,605913 | DATUM m mAHD BEARING 4.67N | | Method Water | | RL
(m) | Depth (m) | Graphic Log | Classification
Symbol | Material Des | cription | Samples
Tests
Remarks | Additional Observations | | Air Hammer | | 837
836
835
834 | 9
10
11
12
13 | | | Becoming grey (continued) Borehole GW09_D terminated at 15m | | | | | | | <u>83</u> 1 | _
_
_
_
16 | | | | | | | # BOREHOLE NUMBER GW09_S PAGE 1 OF 1 | Additional Covervations Real Supplier Rea |)ΔΤΙ | E.S | TARTE | D 9/ | 6/21 | | | COMPLETED 9/6/21 | R.L. SURFACE | ı | DATUM | |--|---------|-------|-------|-------------|--------------|-------------|--------------------------|--|--|------------------------------|-------------------------| | OLIE SIZE D. 1m LOGGED BY TJF CHECKED BY SM OTES Material Description Relationship of the state sta | | | | | | | | | | | | | OLE SIZE 0.1m LOGGED BY TUF CHECKED BY SM THE CHECKED BY SM World RI, Depoin (in) (in) (in) (in) (in) (in) (in) (i | | | | | | | | | | | | | West RL Depicts (m) (m) of O O O O O O O O O O O O O O O O O O | | | | | | | | | | | | | Material Description Ru, Depth (m) (m) O O O O FILL gravely CLAY, brown, light pleasibility, soft, coarse gravets, fine sands, series of gravets and series of gravets and series of gravets. CLAY, material light brown, low pleasibility, hard-very hard, dry, minor sands are gravets are gravets are gravets. Fine sands, or | | | | | | | | | <u> </u> | _ | | | FLL gravely CLAY, brown, high plasticity, soft, coarse gravets, fine sands, model Sands, GLAY natural, light brown, low plasticity, firm, minor gravels, fine sands, gravels CLAY, natural, light brown, high plasticity, hard-very hard, dry, minor sands and gravels CLAY, natural, light brown, high plasticity, hard-very hard, dry, minor sands and gravels GWB 0.12, XRF GWB 0.43, | | Ť | | | | | | | | | | | ### Signor Sandy CLAY: natural, light brown, low plasticity, firm minor gravels, fine sands, dry CLAY: natural, light brown, high plasticity, hard-very hard, dry, minor sands and gravels CLAY: natural, light brown, high plasticity, hard-very hard, dry, minor sands and gravels CLAY: natural, conglomerate, CLAY, brown, with gravels, very hard, dry, minor sands Clay: ASP CLOY: COMP. D.S. XPF C | Metriod | water | | RL
(m) | Depth
(m) | Graphic Log | Classification
Symbol | Material I | Description | Tests | Additional Observations | | Sandy CLAY: natural, light brown, low plasticity, farm, minor gravels, fine sands, dry CLAY: natural, light brown, high plasticity, hard-very hard, dry, minor sands and gravels CLAY: natural, sight brown, high plasticity, hard-very hard, dry, minor sands and gravels SEDROCK: natural, conglomerate, CLAY, brown, with gravels, very hard, dry Becoming softer, moist Becoming very hard (shale), light brown | | | 8 8 | | | | | | sticity, soft, coarse gravels, fine sands, | 36ppm | - | | CLAY; natural, light brown, high plasticity, hard-very hard, dry, minor sands and gravels CLAY; natural, light brown, high plasticity, hard-very hard, dry, minor sands and gravels CMO 63. XRF GMO 9.0.4 XRF GMO 9.0.5 Highm Becoming softer, moist Becoming softer, moist Becoming very hard (shale), light brown Becoming very hard (shale), light brown Becoming very hard (shale) at 4.2m Borehole GW00. Sterminated at 4.2m | | | | | | | | Sandy CLAY; natural, light brown, low | plasticity, firm, minor gravels, fine | XRF15ppm | | | BEDROCK; natural, conglomerate, CLAY, brown, with gravels, very hard, only only only only only only only only | | Z | | | | | | CLAY; natural, light brown, high plast | icity, hard-very hard, dry, minor sands | 7ppm | | | BEDROCK; natural, conglomerate, CLAY, brown, with gravels, very hard, only only only only only only only only | 54.0 | SVVL | | | | | | and gravels | | <lod< td=""><td></td></lod<> | | | BEDROCK: natural, conglomerate, CLAY, brown, with gravels, very hard, dry Becoming softer, moist Becoming very hard (shale), light brown Becoming very hard (shale) at 4.2m Becoming wery hard (shale) at 4.2m | | | | | 1 | | | | | <lod< td=""><td></td></lod<> | | | BEDROCK; natural, conglomerate, CLAY, brown, with gravels, very hard, dry Becoming softer, moist Becoming very hard (shale), light brown Becoming very hard (shale), light brown Borehole GW09_S terminated at 4.2m | | : | | | | | | | | <lod< td=""><td></td></lod<> | | | BEDROCK, natural, conglomerate, CLAY, brown, with gravels, very hard, dry Becoming softer, moist Becoming very hard (shale), light brown Becoming very hard (shale) at 4.2m | | ŀ | | | | | | | | Gvv09_1.0, XRF
14ppm | - | | Becoming softer, moist Becoming wery hard (shale), light brown Borehole GW09_S terminated at 4.2m Borehole GW09_S terminated at 4.2m | | : | | | | | | REDROCK: patural conglomorate C | I AV brown with gravele very hard | | | | Becoming softer, moist Becoming softer, moist Becoming wery hard (shale), light brown Becoming wery hard (shale) at 4.2m Becoming wery hard (shale) at 4.2m Borehole GW09_S terminated at 4.2m | | ŀ | | | | 0 0 | | | יה, טוטwוו, willi gravels, very flafd, | | | | Becoming very hard (shale), light brown Borehole GW09_S terminated at 4.2m | 1 | | | | 2 | 2 0 | | Becoming softer, moist | | | | | Becoming very hard (shale), light brown Borehole GW09_S terminated at 4.2m | | ŀ | | | - | ٥٥ | | | | | | | Becoming very hard (shale), light brown Borehole GW09_S terminated at 4.2m | | : | | | - | 0 0 | | | | | | | Becoming very hard (shale), light brown Borehole GW09_S terminated at 4.2m | | | | | 1 - 1 | 0 0 | | | | | | | Becoming very hard (shale), light brown Borehole GW09_S terminated at 4.2m | | | | | | ٥٥٥ | | | | | | | Becoming very hard (shale), light brown Borehole GW09_S terminated at 4.2m | | | | | 3 | 0 0 | | | | | | | Becoming very hard (shale), light brown Borehole GW09_S terminated at 4.2m | | | | | - | | | | | | | | Borehole GW09_S terminated at 4.2m | | | | | | \sim | | December of the let Bold have | | | | | Borehole GW09_S terminated at 4.2m | | | | | | 0 d | | Becoming very nard (snale), light bro | wn | | | | Borehole GW09_S terminated at 4.2m | | ľ | | | | ಿ | | | | | | | | | | | | | 0 0 | | | | | | | | | | | | | | | Borehole GW09_S terminated at 4.2n | n | 5 | 6 | | | | |
| 7 | Λ | M | | de | | | |---|---|-----|---|----|---|---| | 5 | | UYU | D | U | 6 | _ | | | | | | | | | | 'K(| JJE | CIN | IUMBI | EK _ | 3180 | 0119 | 3 | | PROJECT LOCATION _C | aptains Fiat, N | SVV | | | |----------|-------|--------------|-----------------------------|------------|--------------|-------------|--------------------------|---|---------------------------------------|-----------------------------|-------------------------|--|--| | Α | TE S | STAF | RTED | 9/6 | 5/21 | | | COMPLETED 9/6/21 | R.L. SURFACE 865.981 | | DATUM _ m mAHD | | | | RI | LLI | NG (| ONTE | RAC | TOR | Stra | tacore | Pty Ltd | SLOPE 90° BEARING | | | | | | Ql | UIPI | MEN. | Г _На | and A | Auger, | Solid | Flight | Auger | HOLE LOCATION 720896 | 6.58E,6058791 | .96N | | | | ЮІ | LE S | SIZE | _0.1r | n | | | | | LOGGED BY TJF | | CHECKED BY SM | | | | 10 | TES | <u> </u> | | | | | | | | | | | | | IMELLIOO | Water | Wi
Det | ell f | RL
m) | Depth
(m) | Graphic Log | Classification
Symbol | Material Desi | cription | Samples
Tests
Remarks | Additional Observations | | | | | | X | M | | | | | FILL; gravelly CLAY, dark brown, high pa | Isticity, soft, moist, medium grained | GW10_0.0, XR
1468ppm | | | | | | | | | | | | | Sandy CLAY; natural, brown, high plastici minor gravels, firm | ty, moist, medium grained sands, | GW10_0.1, XR
21ppm | | | | | | | | | | | | | | | GW10_0.2, XR
28ppm | | | | | | | | | | | | | CLAY; natural, red-brown, high plasticity, | firm, moist, minor gravels and | GW10_0.3, XR
27ppm | | | | | | | | 86 | <u>6</u> 5 | _
_1 | | | sands | Š | GW10_0.4, XR
21ppm | | | | | | | | | | | | | | | GW10_0.5, XR
27ppm | F | | | | | | | | | | | | | | GW10_1.0, XR
23ppm | F | | | | | | | | | | | | BEDROCK; natural, red-brown, conglome | erate | -1.15 | \mathbb{N} | 8 | 64 | 2 | \gg | | | | GW10_2.0, XR | F | | | | | | | | | | | | | | 27ppm | 8 | 63 | 3 | XV. | SHALE; natural, grey | | | | | | | | | | 86 | 62 | 4 | | | | | GW10 4.0, XR | rF | | | | | | | | | | | | | | GW10_4.0, XR
184ppm | 1 | | | | | | | | | | | | | 86 | <u>6</u> 1 | 5 | | | | | | | | | | | | | $\left \vdots \right ^{-}$ | ▼ | | 86 | 60 | 6 | | | | | | | | | | | SWL⊩ | | | | | | | | | | | | | | | S | 8 | 59 | 7 | | | | | | | | | | | | | | - | | | | | | | | | | | | | l:E | <u> </u> .: | | 1 | | | | | | | | | | | | ŀ∷≣ | :: | | + | | | | | | | | | | | | ı ∵ ⊏ | յ∤ | - 1 | | | | ĺ | | | | | | PAGE 2 OF 2 | R | Δ | M | R | de | | |---|---|-----|---|----|--| | | | u-u | _ | | | BOREHOLE / TEST PIT 318001193 CAPTAINS FLAT JUNE 2021.GPJ GINT STD AUSTRALIA.GDT 19/8/21 | | | Depa | | | | | | PROJECT NAME Capta | | | |----------|---------------|-----------------|--------------------------|----------------------|--------------|--------------------------|---------------------------------|-------------------------------|-----------------------------|-------------------------| | DR
EQ | ILLII
UIPN | NG CON | ITRAC
Hand | CTOR
Auger, | Strate Solid | tacore
Flight | COMPLETED _9/6/21 Pty Ltd Auger | SLOPE 90° HOLE LOCATION 72089 |
6.58E,6058791 | BEARING
.96N | | NO | TES | | | | | | | | | | | Method | Water | Well
Details | RL
(m) | Depth
(m) | Graphic Log | Classification
Symbol | Material Des | cription | Samples
Tests
Remarks | Additional Observations | | | | | 857
856
853
852 | 9:
10:
11:
 | | | Borehole GW10 terminated at 10m | | | | | | | | | | | 93 | | | | |--------|-------|-----------|--------------|-------------|--------------------------|---|----------------------------|--------------------------------|-------------------------| | | | | | | | COMPLETED _10/6/21 | | | | | | | | | | | ratacore Pty Ltd | | | | | | | | | | | | | | | | IOL | E S | SIZE | 0.1m | | | | LOGGED BY TJF | | CHECKED BY SM | | TOI | ES | | | | | | | | | | | | | | бо | tion | | | Samples | | | Method | Water | RL
(m) | Depth
(m) | Graphic Log | Classification
Symbol | Material Descript | ion | Tests
Remarks | Additional Observations | | | | | _ | | | FILL; gravelly CLAY, light brown, low plasticity, fine sands, moist | gravels and medium grained | SAQP10-BH01_0.
XRF 6324ppm | | | | | | _ | | | Silty CLAY; natural, dark brown, high plasticity, fine | sands (minor), moist, firm | SAQP10-BH01_0.2
XRF 1758ppm | | | | | | _ | | | CLAY; natural, light brown, firm, high plasticity, mo | st | — SAQP10-BH01_0.
XRF 200ppm | 5 | | | | | _ | | | | | SAQP10-BH01_0.7
XRF 293ppm | 75 | | | | | 1 | | | Becoming harder with depth | | SAQP10-BH01_1. | 0 | | | | | _ | | | | | XRF 182ppm
SAQP10-BH01 1.2 | 25 | | | | | _ | | | | | XRF 52ppm | | | \top | | | _ | | | Borehole SAQP10-BH01 terminated at 1.5m | | SAQP10-BH01_1.
XRF 99ppm | ٥ | | | | | - | | | | | | | | | | | 2 | | | | | | | | | | | _ | | | | | | | | | | | _ | | | | | | | | | | | - | | | | | | | | | | | _ | | | | | | | | | | | 3 | | | | | | | | | | | _ | | | | | | | | | | | _ | | | | | | | | | | | _ | | | | | | | | | | | _ | | | | | | | | | | | 4 | | | | | | | | | | | - | | | | | | | | | | | _ | | | | | | | | | | | _ | | | | | | | | | | | _ | | | | | | | | | | | 5 | | | | | | | | | | | - | | | | | | | | | | | _ | | | | | | | | | | | - | | | | | | | | | | | _ | | | | | | | | | | | 6 | | | | | | | | | | | - | | | | | | | | | | | - | | | | | | | | | | | - | | | | | | | | | | | _ | | | | | | | | | | | 7 | | | | | | | | | | | - | | | | | | | | | | | - | | | | | | | | | | | - | | | | | | | | | | | l | | | | | 1 | I | | | | | • • | | | | | | | |--|---|--------------|---------------|-------------|--------------------------|--|------------------------------|--|-------------------------| | СГ | .IEN1 | Γ <u>D</u> ε | epartme | ent of | Regio | nal NSW | PROJECT NAME Capta | ains Flat Lead M | anagement Plan | | PF | ROJE | CT N | UMBEI | R _31 | 80011 | 93 | PROJECT LOCATION _(| Captains Flat, NS | SW | | DA | ATE S | STAR | TED _ | 10/6/ | 21 | COMPLETED _10/6/21 | R.L. SURFACE | | DATUM | | | RILLING CONTRACTOR Stratacore Pty Ltd SLOPE 90° | НС | DLE S | SIZE | 0.1m | | | | LOGGED BY TJF | | CHECKED BY SM | | NC | TES | | | | | | | I | | | Method | Water | RL
(m) | Depth
(m) | Graphic Log | Classification
Symbol | Material Description | | Samples
Tests
Remarks | Additional Observations | | | | | | | | Sandy SILT; brown, medium grained sands, low plas
rootlets | / | SAQP10-BH02_0
XRF 497ppm
SAQP10-BH02_0 | | | | | | | | | Gravelly CLAY; orange-brown, high plasticity, mediumoist, firm | m grained gravels and sands, | XRF 2252ppm
D7 XRF | , | | | | | | | | Silty CLAY; natural, brown, high palsticity, soft, silts, i | moist | 1820ppm
SAQP10-BH02 |).5 | | | | | | | | | | XRF 2200ppm
SAQP10-BH02_0 | .75 | | | | | 1 | | | CLAY; light brown with grey and orange mottles, high | n plasticity, firm, moist | XRF 1773ppm
SAQP10-BH02 | | | | | | | | | | | XRF 71ppm
SAQP10-BH02_1
XRF 60ppm | .25 | | | | | | | | Borehole SAQP10-BH02 terminated at 1.5m | | SAQP10-BH02_
XRF 92ppm | 1.5 | | | | | | | | | | 7 t t 02pp | | | | | | 2 | - | | | | | | | | | | | - | | | | | | | | | | | - | | | | | | | | | | | 3 | 19/8/2 | | | 4 | | | | | | | | - 25 | | | - | | | | | | | | | | | - | | | | | | | | 2 | | | - | | | | | | | | ב
ב | | | _
<u>5</u> | | | | | | | | | | | | | | | | | | | 2 | | | | | | | | | | | 202 | | | | | | | | | | | JINE Z | | | | | | | | | | | 5 | | | 6 | | | | | | | | 0 | | | | | | | | | | | <u> </u> | | | - | | | | | | | | 200 | | | - | | | | | | | | 200 | | | 7 | | | | | | | | 5 | | | ' | | | | | | | | -
2 | | | | | | | | | | | BORETIOLE / IEST PIT 518001183 CAPTAINS FLATJONE 2021.GPJ GINTS ID AUSTRALIA.GDT 19/6/21 | | | | | | | | | | | 2 | | | | | | | | | | | S S | | | 8 | | | | | | | | PROJECT NUMBER 318001193 DATE STARTED 10/6/21 COMPLETED 10/6/21 | | | | | | | | | DATUM | |--|-------|-----------|-----------|--------------|--------------------------|---|--------------------------------------|---|-------------------------| | DATE STARTED 10/6/21 COMPLETED 10/6/21 R.L. SUF DRILLING CONTRACTOR Stratacore Pty Ltd SLOPE | LOGGED BY _ IJF | | CHECKED BY SIVI | | | -3 | | | | | | | | | | DOI DOI | water | RL
(m) | Depth (m) | Grapriic Log | Classification
Symbol | Material Descripti | on |
Samples
Tests
Remarks | Additional Observations | | | | | | \bigotimes | | FILL; silty SAND, dark brown, loose, low plasticity s | ilts, minor gravels, rootlets, moist | SAQP10-BH03_0
XRF 262ppm
SAQP10-BH03_0
XRF 360ppm
SAQP10-BH03_0 | 0.25 | | | | | | X | | CLAY; natural, light brown with orange and grey mo | ottles firm silts moist tree roots | XRF 586ppm, D
XRF 362ppm | 08 | | | | | 1 | | | present | ,, | SAQP10-BH03_0
XRF <lod
SAQP10-BH03_
XRF <lod< td=""><td>).75</td></lod<></lod
 |).75 | | | | | | | | | | SAQP10-BH03_1
XRF <lod< td=""><td>.25</td></lod<> | .25 | | | | | | | | CLAY; light grey with orange mottles, high plasticity | r, tirm, moist | SAQP10-BH03 | 1.5 | | | | | | | | Borehole SAQP10-BH03 terminated at 1.5m | | XRF <lod< td=""><td></td></lod<> | | | | | | <u>2</u> | | | | | | | | | | | _ | 3 | | | | | | | | | | | _ | | | | | | | | | | | _ | | | | | | | | | | | - | | | | | | | | | | | _ | | | | | | | | | | | 4 | _ | <u>5</u> | 6 | _ | 7 | - | | | | | | | | | | | | | | | | | | | PROJECT NUMBER 318001193 DATE STAPTED 10/6/21 COMPLETED 10/6/21 | | | | | | | | | | | |--|-------|-----------|-----------|-------------|--------------------------|---|--|-----------------------------|-------------------------|--| | DATE STARTED 10/6/21 COMPLETED 10/6/21 | | | | | | | | | | | | | | | | | | | SLOPE 90° | | | | | QUIPMENT Push Tube HOLE LOCATION OLE SIZE 0.1m LOGGED BY _T_ | | | | | | | | | | | | HOLE SIZE 0.1m NOTES | | | | | | | _ LOGGED BY _TJF | | CHECKED BY SM | | | OTI | ES | | 1 | | | | | l | T | | | Note: | water | RL
(m) | Depth (m) | Graphic Log | Classification
Symbol | Material Descrip | ion | Samples
Tests
Remarks | Additional Observations | | | | | | | | | FILL; silty SAND, dark brown, loose, mediu graine | d, low plasticity silts, rootlets, moist | SAQP10-BH04_0
XRF 94ppm | 0.0 | | | | | | _ | | | Gravelly CLAY; natural, red-brown, firm, fine grave | als modium plasticity modium | SAQP10-BH04_0
XRF 51ppm | .25 | | | | | | - | | | grained sands, moist | no, medium piasuoty, medium | SAQP10-BH04_0
XRF 63ppm |).5 | | | | | | - | | | | | SAQP10-BH04 0 | | | | | | | _ | | | | | XRF 65ppm | | | | | | | 1 | | | | | SAQP10-BH04_1
XRF 62ppm | 1.0 | | | - | | | - | | | Sandy CLAY; natural, brown, very soft, fine-mediu | m grained sands, wet | SAQP10-BH04_1 | 25 | | | | | | - | | | | | XRF 183ppm
SAQP10-BH04 1 |
 .5 | | | \top | | | _ | | | Borehole SAQP10-BH04 terminated at 1.5m | | XRF 28ppm | | | | | | | - | | | | | | | | | | | | 2 | | | | | | | | | | | | _ | | | | | | | | | | | | _ | | | | | | | | | | | | _ | | | | | | | | | | | | _ | | | | | | | | | | | | 3 | 4 | _ | | | | | | | | | | | | - | | | | | | | | | | | | - | <u>5</u> | | | | | | | | | | | | - | | | | | | | | | | | | _ | | | | | | | | | | | | - | | | | | | | | | | | | - | | | | | | | | | | | | <u>6</u> | | | | | | | | | | | | - | | | | | | | | | | | | _ | | | | | | | | | | | | _ | | | | | | | | | | | | _ | | | | | | | | | | | | 7 | _ | | | | | | | | | | | | - | | | | | | | | | | | | _ | | | | | | | | | | | | - | | | | | | | | | PROJECT NUMBER 318001193 PROJE DATE STARTED 10/6/21 COMPLETED 10/6/21 R.L. SUF | | | | | | | | | DATUM | |--|--|-----------|-----------|-------------|--------------------------|---|--|--|-------------------------| | DRILLING CONTRACTOR Stratacore Pty Ltd SL | QUIPMENT Push Tube H OLE SIZE 0.1m L | | | | | | | | | | NOTES | | | | | | | LOGGED BYIJF | | CHECKED BY SIM | | | IES | _ | 1 | | | | | | T | | pounaivi | Water | RL
(m) | Depth (m) | Graphic Log | Classification
Symbol | Material Description | | Samples
Tests
Remarks | Additional Observations | | | | | _ | | | FILL; silty CLAY, light brown, high plasticity, silts pres sand, moist | ent, soft, minor fien gravel and | SAQP11-BH01_(
XRF 2473ppm
D4 XRF | | | | | | _ | | | Sandy CLAY; natural, light brown with grey mottles, h sands | igh plasticity, moist, firm-soft, fine | 1862ppm
SAQP11-BH01 0 | | | | | | _ | | | Sands | | XRF 4969ppm
SAQP11-BH01 (| | | | | | - | | | CLAY; natural, brown, high plasticity, soft, moist-wet, | | XRF 4584ppm
SAQP11-BH01 0 | | | \dashv | | | 1 | | | CLAY; natural, red with grey mottles, high plasticity, h
Borehole SAQP11-BH01 terminated at 1m | ard, moist | XRF 1769ppm
SAQP11-BH01 | | | | | | - | | | | | XRF 187ppm | | | | | | - | | | | | | | | | | | - | | | | | | | | | | | - | | | | | | | | | | | 2 | | | | | | | | | | | - | | | | | | | | | | | - | | | | | | | | | | | - | | | | | | | | | | | - | | | | | | | | | | | 3 | | | | | | | | | | | - | | | | | | | | | | | _ | | | | | | | | | | | _ | | | | | | | | | | | 4 | - | | | | | | | | | | | _ | 5 | | | | | | | | | | | _ | | | | | | | | | | | _ | | | | | | | | | | | _ | | | | | | | | | | | _ | | | | | | | | | | | <u>6</u> | | | | | | | | | | | - | | | | | | | | | | | - | | | | | | | | | | | _ | | | | | | | | | | | _ | | | | | | | | | | | 7 | | | | | | | | | | | - | | | | | | | | | | | - | | | | | | | | | | | _ | | | | | | | | | | | | | | | | | | | DATE STARTED 10/6/21 COMPLETED 10/6/21 R.L. SURFACE DRILLING CONTRACTOR Stratecore Pty Ltd SLOPE 90° HOLE SIZE 0.1m LOGGED BY TJF NOTES Material Description LOGGED BY TJF | lat, NSW | |--|---------------------------| | ROLE SIZE 0.1m LOGGED BY _TJF Notes Company Compan | | | DOES SZED DOES | | | Meterial Description Test Remains and Service (m) Depth of Control | | | Sample S | CHECKED BY SM | | FILL gravelly CLAY, orange-brown, firm, medium grained sands, well graded gravels, moist moist. FILL gravelly CLAY, orange-brown, firm, medium grained sands, well graded gravels, MSR-42 SAQP114 XRF-42 SAQP114 XRF-42 SAQP114 SAQP114 SAQP114 SAQP114 SAQP114 Brorehole SAQP11-BH02 terminated at 1 m CLAY, netural, red with grey motities, high plasticity, hard, moist SAQP114 SAQP114 Borehole SAQP11-BH02 terminated at 1 m 2 4 4 6 6 6 | | | moist CLAY, natural, brown, high plasticity, soft, moist-wet, minor fine sands AGP11-B AGP1-B AGP11-B AGP1 | s Additional Observations | | CLAY; natural, red with grey mottles, high plasticity, hard, moist CLAY; natural, red with grey mottles, high plasticity, hard, moist CLAY; natural, red with grey mottles, high plasticity, hard, moist SAQP114- XRF-65 2 4 4 6 6 | 612ppm
BH02_0.25 | | CLAY; natural, brown, high plasticity, soft, moist-wel, minor fine sands XRP 44 A CLAY; natural, red with grey mottles, high plasticity, hard, moist Borehole SAQP11-8H02 terminated at 1m 3 3 4 4 4 6 6 | BH02_0.5 | | CLAY; natural, red with
grey mottles, high plasticity, hard, moist SAQP11-BH02 terminated at 1m SAQP11-BH02 terminated at 1m SAQP11-BH02 terminated at 1m | 3H02_0.75 | | Borehole SAQP11-BH02 terminated at 1m XRF 68 | '' | | 33
44
 | | | 4
-
-
-
5
5
-
-
-
-
-
-
-
-
-
-
-
-
-
- | | | 4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | | | 4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | | | 4
-
-
-
5
5
-
-
-
-
-
-
-
-
-
-
-
-
-
- | | | 4
-
-
-
5
5
-
-
-
-
-
-
-
-
-
-
-
-
-
- | | | 5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | | | 5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | | | | | | | | | 5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | | | | | | | | | <u>5</u>
-
-
-
-
6
-
-
-
- | | | <u>5</u>
-
-
-
-
6
-
-
-
- | DATE STARTED10/6/21 COMPLETED10/6/21 DRILLING CONTRACTORStratacore Pty Ltd EQUIPMENTPush Tube HOLE SIZE0.1 m | | | | | | | | | |--|-------|-----------|-----------------|--------------------------|---|----------------|--|-------------------------| HOLE SIZE 0.1m | | | | | | LOGGED BY _TJF | | CHECKED BY SM | | 10 | TES | | | ı | | | T | 1 | | Method | Water | RL
(m) | (m) Graphic Log | Classification
Symbol | Material Descri | | Samples
Tests
Remarks | Additional Observations | | | W . | | (m) 5
 | Ō | FILL; gravelly CLAY, orange-brown, firm, medium moist CLAY; natural, brown, high plasticity, soft, moist-to-broke SAQP11-BH03 terminated at 1m | | SAQP11-BH03_C
XRF 12489ppm
D5 6797ppm
SAQP11-BH03_O
XRF 5787ppm
SAQP11-BH03_O
XRF 1204ppm
SAQP11-BH03_1
XRF 1564ppm
SAQP11-BH03_1 | ,
25
.5
.75 | | R.L. SURFACE | | DATUM | |--|---|--| | HOLE LOCATION | | | | ription | Samples
Tests
Remarks | Additional Observations | | nigh plasticity, moist firm, high plasticity, moist | XRF 3211ppm
SAQP11-BH04_0
XRF 214ppm
SAQP11-BH04_0
XRF 120ppm
SAQP11-BH04_0
XRF 124ppm
SAQP11-BH04_0 | 0.25
0.5
1.75 | | | PROJECT LOCATION R.L. SURFACE SLOPE 90° HOLE LOCATION LOGGED BY TJF ription | PROJECT LOCATIONCaptains Flat, NS R.L. SURFACE SLOPE _90° HOLE LOCATION LOGGED BY _TJF Samples Tests Remarks nigh plasticity, moist, rootlets | | DATE STARTED DRILLING CONTR | 10/6/21 RACTOR S sh Tube n logical l | COMPLETED 10/6/21 tratacore Pty Ltd Material Descr | R.L. SURFACE SLOPE 90° HOLE LOCATION LOGGED BY TJF | [| DATUM | |--|--|--|---|-------------------------------|-------------------------| | DRILLING CONTR EQUIPMENT Pus HOLE SIZE 0.1m NOTES RL Depth | RACTOR S
sh Tube | tratacore Pty Ltd | SLOPE _90° HOLE LOCATION LOGGED BY _TJF | E | BEARING | | HOLE SIZE 0.1m NOTES | sh Tube | | HOLE LOCATION LOGGED BY _TJF | | | | NOTES | n | | LOGGED BY _TJF | | | | NOTES | | 1 | | | CHECKED BY SM | | ethod
RL Depth | | Material Descr | intion | | | | Method Water (m) (m) (posterior (m) (m) (m) | Graphic Log
Classification
Symbol | Material Descr | intion | | 1 | | | | | puon | Samples
Tests
Remarks | Additional Observations | | | | FILL; silty CLAY, dark brown, soft, minor sand, h | igh plasticity, moist, rootlets | SAQP11-BH05_0.
XRF 2201ppm | | | | | | | SAQP11-BH05_0.2
XRF 295ppm | | | | | CLAY; natural, light brown with orange mottles, t | firm, high plasticity, moist | SAQP11-BH05_0.
XRF 150ppm | 5 | | | | | | SAQP11-BH05_0.7
XRF 294ppm | 75 | | 1 | | | | SAQP11-BH05_1. | 0 | | | | Borehole SAQP11-BH05 terminated at 1m | | XRF 394ppm | | | |] | 2 | _ | | | | | | | | | | | | | | 3 | - | | | | | | | - | | | | | | | 4 | | | | | | | - | | | | | | | - | | | | | | | - | | | | | | | - | | | | | | | 5 | | | | | | | - | - | | | | | | - | | | | | | | - | | | | | | | - | | | | | | | 6 | | | | | | | - | | | | | | | - | - | | | | | | - | | | | | | | - | | | | | | | | - | | | | | | - | - | | | | | | - | | | | | | | - | | | | | | | 8 | | | | | | | PROJECT NUMBER _ 318001193 | | | | | | B. 0 | | | |--|-------|-----------|---|--------------------------|--|-------------------------------|--|-------------------------| | DATE STARTED 10/6/21 COMPLETED 10/6/21 | | | | | | | | | | | | | G CONTRACTOR Stratacore Pty Ltd SLOPE 90° | | | | | | | | | | | | | | | | | HOLE SIZE 0.1m NOTES | | | | | | LOGGED BY _TJF | | CHECKED BY SM | | OTI | ES | | | | | | | | | 24/4-1 | Water | RL
(m) | Depth (m) Depth Cod | Classification
Symbol | Material Descr | iption | Samples
Tests
Remarks | Additional Observations | | | | | - | | FILL; sandy CLAY, brown, high plasticity, firm, w gravels, moist | vith medium grained sands and | SAQP11-BH06_0
XRF 444ppm
SAQP11-BH06_0 | | | | | | 💥 | X | FILL; gravelly CLAY, orange, high plasticity, fine | gravels, medium grained sands | XRF 2397ppm
SAQP11-BH06 (| ı | | | | | | X | _ moist, hard | | XRF 62577ppn | n | | | | | | | CLAY; natural, brown, high plasticity, soft, moist- | -wet, minor tine sands | SAQP11-BH06_0
XRF 363ppm | | | 1 | 4 | | 1 | | CLAY; natural, red with grey mottles, high plastic | city, hard, moist | SAQP11-BH06_ | | | | | | | | Borehole SAQP11-BH06 terminated at 1m | | XRF 761ppm | 2 | 3 | 4 | 5 | 6 | 7 | | | | | | | | | | 7 | - | | | | | | | - 1 | | | 1 1 | 1 | | | 1 | 1 | | | | | • | | | | | | | |--|-------|--------------|--------------|--------------|--------------------------|---|-------------------------------|------------------------------|-------------------------| | CL | .IENT | Γ <u>D</u> e | epartm | ent of |
Regio | nal NSW | PROJECT NAME _Capta | ains Flat Lead M | anagement Plan | | PF | ROJE | CT N | UMBE | R _31 | 18001 | 193 | _ PROJECT LOCATION _ | Captains Flat, N | SW | | DA | ATE S | STAR | TED _ | 10/6/ | 21 | COMPLETED 10/6/21 | R.L. SURFACE | | DATUM | | | | | | | | ratacore Pty Ltd | | | | | EC | QUIPN | MENT | _Pus | h Tub | е | | HOLE LOCATION | | | | н | DLE S | SIZE | 0.1m | | | | LOGGED BY TJF | | CHECKED BY SM | | NC | OTES | | | | | | | | | | Method | Water | RL
(m) | Depth
(m) | Graphic Log | Classification
Symbol | Material Descript | | Samples
Tests
Remarks | Additional Observations | | | | | | | | FILL; silty CLAY, dark brown, soft, minor sand, high | n plasticity, moist, rootlets | SAQP11-BH07_
XRF 2058ppm | 1 | | | | | | | | CLAY; natural, brown, high plasticity, soft, moist-we | et, minor fine sands | SAQP11-BH07_0
XRF 2725ppm | 1 | | | | | | | | | | SAQP11-BH07_
XRF 352ppm | | | | | | | | | CLAY; natural, red with grey mottles, high plasticity | , hard, moist | SAQP11-BH07_0
XRF 133ppm | | | \vdash | | | 1 | | | Borehole SAQP11-BH07 terminated at 1m | | SAQP11-BH07_
XRF 233ppm | | | | | | | | | 55.57.616 G. Ngi Tr-Di IOT tominiated at IIII | | ναν σοορριιι | | | | | | | | | | | | | | | | | - | 2 | | | | | | | | | | | - | | | | | | | | | | | - | 3 | 7/0/6 | | | 4 | | | | | | | | - | | | | | | | | | | | 5 | | | | | | | | | | | 2 | | | | | | | | | | | Ž | | | | | | | | | | | 2 | | | 5 | | | | | | | | 5 | | | | | | | | | | | 5 | | | | | | | | | | | 707 | | | - | | | | | | | | | | | - | | | | | | | | 5 | | | <u>6</u> | | | | | | | | 2 | | | | | | | | | | | Į. | | | | | | | | | | | 261 | | | - | | | | | | | | | | | 7 | | | | | | | | 5 | | | + | | | | | | | | 2 | | | | | | | | | | | ,
, | | | | | | | | | | | BORETIOLE / IEST PIL STROUTISS CAPTAINS FLATJONE ZOZI.GFJ GINTSTD AUSTRALIA.GDT 19/6/Z | | | | | | | | | | | 200 | | | 8 | | | | | | | | | | | • | | | | | | | |--|-------|-----------|--------------|-------------|--------------------------|--|---------------------------------|------------------------------|-------------------------| | CL | .IEN1 | Γ _De | epartme | ent of | Regio | nal NSW | PROJECT NAME _Capta | ins Flat Lead Ma | anagement Plan | | PF | ROJE | CT N | UMBEI | R _31 | 180011 | 93 | PROJECT LOCATION _ | Captains Flat, NS | SW | | DA | ATE S | STAR | TED _ | 10/6/ | 21 | COMPLETED 10/6/21 | R.L. SURFACE | | DATUM | | | | | | | | ratacore Pty Ltd | | | | | EC | QUIPI | MENT | Pus | h Tub | е | | HOLE LOCATION | | | | н | DLE S | SIZE | 0.1m | | | | LOGGED BY TJF | | CHECKED BY SM | | NC | OTES | | | | | | | | | | Method | Water | RL
(m) | Depth
(m) | Graphic Log | Classification
Symbol | Material Descriptio | | Samples
Tests
Remarks | Additional Observations | | | | | | | | FILL; sandy CLAY, light brown, soft, fine gravels, me plasticity | dium grained sands, moist, high | SAQP11-BH08_0
XRF 735ppm | | | | | | | | | FILL; sandy CLAY, red-brown, soft, fine gravels, me | dium grained sands, moist, high | SAQP11-BH08_0
XRF 1316ppm | | | | | | | | | plasticity CLAY; natural, brown, high plasticity, soft, moist-wet | minor fino condo | SAQP11-BH08_0
XRF 6013ppm | | | | | | | | | CLAT, Hatural, Drown, High plasticity, soit, moist-wei | , millor line salius | SAQP11-BH08_0
XRF 3463ppm | | | \vdash | | | 1 | | | Borehole SAQP11-BH08 terminated at 1m | | SAQP11-BH08_
XRF 4504ppm | | | | | | - | | | | | | | | | | | - | | | | | | | | | | | - | | | | | | | | | | | _
2 | | | | | | | | | | | _ | 3 | - | | | | | | | | | | | - | | | | | | | | 1.7/6 | | | | | | | | | | | 8/8 | | | 4 | | | | | | | | 5 | | | | | | | | | | | À L | | | | | | | | | | | 200 | | | | | | | | | | | o lo | | | 5 | 202 | | | | | | | | | | | | | | - | | | | | | | | Ś | | | 6 | | | | | | | | | | | - | | | | | | | | <u> </u> | | | - | | | | | | | | 93 6 | | | | | | | | | | | 200 | | | 7 | | | | | | | | 2 | | | ' | | | | | | | | - 01 | | | | | | | | | | | -
-
- | | | | | | | | | | | BOREHOLE / IEST PIT 318001193 CAPTAINS FLATJUNE 2021.GPJ GINTSTD AUSTRALIA.GDT 19/8/21 | | | | | | | | | | | 25 | | | 8 | | | | | | | BOREHOLE / TEST PIT 318001193 CAPTAINS FLAT JUNE 2021.GPJ GINT STD AUSTRALIA.GDT 19/8/21 ### **BOREHOLE NUMBER SAQP11-BH09** | CLI | ENT | _ De | partme | ent of | Regior | nal NSW | PROJECT NAME Capta | ains Flat Lead M | anagement Plan | |--------|-------|-----------|--------------|-------------|--------------------------|---|---------------------------------|------------------------------|-------------------------| | | | | JMBEI | COMPLETED _ 10/6/21 | | | | | DRI | LLII | NG C | ONTRA | АСТО | R _St | ratacore Pty Ltd | SLOPE 90° | | BEARING | | | | | | | | | | | | | HO | LE S | SIZE | 0.1m | | | | LOGGED BY TJF | | CHECKED BY SM | | | ΤES | Method | Water | RL
(m) | Depth
(m) | Graphic Log | Classification
Symbol | Material Descriptio | | Samples
Tests
Remarks | Additional Observations | | | | | | XX | | FILL; silty CLAY, dark brown, soft, minor sands and | gravels, high plasticity, moist | SAQP11-BH09_0
XRF 986ppm | | | | | | | XX | | | | SAQP11-BH09_0
XRF 1612ppm | | | | | | | | | CLAY; natural, light brown with orange mottles, firm, | high plasticity, moist | SAQP11-BH09_0
XRF 98ppm |).5 | | | | | | | | , | 5 i 3, | SAQP11-BH09_0 | .75 | | | | | | | | | | XRF 93ppm
SAQP11-BH09 | | | | | | | | | Borehole SAQP11-BH09 terminated at 1m | | XRF 160ppm | | | | | | | | | | | | | | | | | - | | | | | | | | | | | - | | | | | | | | | | | _ | | | | | | | | | | | 2 | | | | | | | | | | | _ | | | | | | | | | | | _ | 3 | _ | | | | | | | | | | | _ | | | | | | | | | | | _ | | | | | | | | | | | 4 | | | | | | | | | | | _ | 5 | <u>6</u> | | | | | | | | | | | = | - | 7 | 1 | | | | | | | | CLI | | | epartm | ent of | Regio | nal NSW | | | | |--------|-------|-----------|--------------|-------------|--------------------------|--|------------------------------------|-----------------------------|-------------------------| | PR | OJE | CT N | UMBE | R _31 | 180011 | 93 | PROJECT LOCATION _ | Captains Flat, N | SW | | DA | TE S | STAR | TED _ | 10/6/ | 21 | COMPLETED _10/6/21 | R.L. SURFACE | | DATUM | | DR | ILLI | NG C | ONTR | ACTO | R _St | ratacore Pty Ltd | SLOPE _90° | | BEARING | | EQ | UIPN | /ENT | _Pus | h Tub | е | | HOLE LOCATION | | | | НО | LE S | SIZE | 0.1m | | | | LOGGED BY _TJF | | CHECKED BY SM | | NO | TES | | | | | | | | | | Method | Water | RL
(m) | Depth
(m) | Graphic Log | Classification
Symbol | Material Descri | | Samples
Tests
Remarks | Additional Observations | | | | | | XX | | FILL; silty CLAY, dark brown, soft, minor sands a | nd gravels, high plasticity, moist | SAQP11-BH10_
XRF 611ppm | | | | | | | \ggg | | | | SAQP11-BH10_0
XRF 70ppm | | | | | | | | | CLAY; natural, light brown with orange mottles, fi | rm, high plasticity, moist | SAQP11-BH10_
XRF 113ppm | | | | | | | | | | | SAQP11-BH10_0 | | | | | | 1 | | | | | XRF 74ppm
SAQP11-BH10 | 10 | | | | | | | | Borehole SAQP11-BH10 terminated at 1m | | XRF 80ppm | | | | | | - | | | | | | | | | | | - | | | | | | | | | | | _ | | | | | | | | | | | - | | | | | | | | | | | 2 | | | | | | | | | | | _ | | | | | | | | | | | - | | | | | | | | | | | - | | | | | | | | | | | _ | | | | | | | | | | | 3 | | | | | | | | | | | _ | | | | | | | | | | | _ | | | | | | | | | | | _ | | | | | | | | | | | _ | | | | | | | | | | | 4 | | | | | | | | | | | _ | | | | | | | | | | | _ | | | | | | | | | | | _ | | | | | | | | | | | _ | | | | | | | | | | | 5 | 6 | - | | | | | | | | | | | - | | | | | | | | | | | 7 | | | | | | | | | | | 7 | | | | | | | | | | | - | | | | | | | | | | | - | | | | | | | | | | | - | | | | | | | | 1 | ' | | | | | | | | | | ILLING C | T Push Tu O.1m On the property of proper | OR Strate | COMPLETED 10/6/21 R.L. SURFACE SLOPE 90° HOLE LOCATION LOGGED BY TJF Material Description Material Description LL; silty SAND, brown, loose, medium grained, low plasticity silts, moist, rootlets LL; sandy CLAY, reworked natural, light brown, fine-medium grained sands, high sticity, moist, firm-soft AY; natural, brown, high plasticity, soft, moist-wet, minor fine sands AY; natural, red with grey mottles, high plasticity, hard, moist prehole SAQP13-BH01 terminated at 1m | В | Additional Observations | |--
--|--------------------------|--|---|------------------------------------| | LE SIZE TES | Depth (m) bor outder or | Olassification Symbol Cr | Material Description LL; silty SAND, brown, loose, medium grained, low plasticity silts, moist, rootlets LL; sandy CLAY, reworked natural, light brown, fine-medium grained sands, high sticity, moist, firm-soft LAY; natural, brown, high plasticity, soft, moist-wet, minor fine sands LAY; natural, red with grey mottles, high plasticity, hard, moist | Samples Tests Remarks SAQP13-BH01-0.0 XRF 1444ppm SAQP13-BH012 XRF 7020ppm SAQP13-BH015 XRF 392ppm SAQP13-BH017 XRF 245ppm SAQP13-BH01-1.0 | Additional Observations | | TES | Depth (m) | Classification Symbol CT | Material Description Material Description LL; silty SAND, brown, loose, medium grained, low plasticity silts, moist, rootlets LL; sandy CLAY, reworked natural, light brown, fine-medium grained sands, high sticity, moist, firm-soft AY; natural, brown, high plasticity, soft, moist-wet, minor fine sands AY; natural, red with grey mottles, high plasticity, hard, moist | Samples Tests Remarks SAQP13-BH01-0.0 XRF 1444ppm SAQP13-BH012 XRF 7020ppm SAQP13-BH015 XRF 392ppm SAQP13-BH0175 XRF 245ppm SAQP13-BH01-1.1.0 | Additional Observations | | TES | Depth (m) 1 | Classification Symbol | Material Description LL; silty SAND, brown, loose, medium grained, low plasticity silts, moist, rootlets LL; sandy CLAY, reworked natural, light brown, fine-medium grained sands, high sticity, moist, firm-soft AY; natural, brown, high plasticity, soft, moist-wet, minor fine sands AY; natural, red with grey mottles, high plasticity, hard, moist | Samples Tests Remarks SAQP13-BH01-0.0 XRF 1444ppm SAQP13-BH012: XRF 7020ppm SAQP13-BH015 XRF 392ppm SAQP13-BH017: XRF 245ppm SAQP13-BH01-1.1.0 | Additional Observations October 1 | | ater
73 | Depth (m) 1 | FIL
FIL
pls
CL | LL; silty SAND, brown, loose, medium grained, low plasticity silts, moist, rootlets LL; sandy CLAY, reworked natural, light brown, fine-medium grained sands, high sticity, moist, firm-soft AY; natural, brown, high plasticity, soft, moist-wet, minor fine sands AY; natural, red with grey mottles, high plasticity, hard, moist | Tests Remarks SAQP13-BH01-0.0 XRF 1444ppm SAQP13-BH01-2 XRF 7020ppm SAQP13-BH01-5 XRF 392ppm SAQP13-BH01-75 XRF 245ppm SAQP13-BH01-1.0 | 5
5
5 | | Water (a) (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c | | FIL
FIL
pls
CL | LL; silty SAND, brown, loose, medium grained, low plasticity silts, moist, rootlets LL; sandy CLAY, reworked natural, light brown, fine-medium grained sands, high sticity, moist, firm-soft AY; natural, brown, high plasticity, soft, moist-wet, minor fine sands AY; natural, red with grey mottles, high plasticity, hard, moist | Tests Remarks SAQP13-BH01-0.0 XRF 1444ppm SAQP13-BH01-2 XRF 7020ppm SAQP13-BH01-5 XRF 392ppm SAQP13-BH01-75 XRF 245ppm SAQP13-BH01-1.0 | 5
5
5 | | | 1 | FII pls | LL; sandy CLAY, reworked natural, light brown, fine-medium grained sands, high sticity, moist, firm-soft AY; natural, brown, high plasticity, soft, moist-wet, minor fine sands AY; natural, red with grey mottles, high plasticity, hard, moist | XRF 1444ppm
SAQP13-BH012f
XRF 7020ppm
SAQP13-BH015
XRF 392ppm
SAQP13-BH017f
XRF 245ppm
SAQP13-BH01-1.1. | 5 | | | -
-
- | CL | AY; natural, red with grey mottles, high plasticity, hard, moist | SAQP13-BH015
XRF 392ppm
SAQP13-BH0175
XRF 245ppm
SAQP13-BH01-1.0 | 5 | | | -
-
- | | | SAQP13-BH0175
XRF 245ppm
SAQP13-BH01-1.0 | | | | -
-
- | | | SAQP13-BH01-1.0 | C . | | | -
-
- | Bo | orehole SAQP13-BH01 terminated at 1m | | | | | -
-
- | | | | | | | | | | | | | | 3 | | | | | | | 3
-
-
- | | | | | | | 3 | | | | | | | 3 | - | | | | | | | 1 1 | | | | 1 | | | | | | · | | | | 4 | <u>5</u> | <u>6</u> | 7 | | | | | | | 1 1 | | | | | | | | | | | | | | | | | i | | | | | UMBER _3 | | | PROJECT LOCATION _C | | | |---------|-----------|--------------------------|--------------------------|--|-------------------------------|-----------------------------|-------------------------| | RILL | | | | COMPLETED _10/6/21 R | | | | | | | | | tratacore Pty Ltd S | | | | | | | | | н | | | | | IOLE | SIZE | 0.1m | | L | OGGED BY TJF | | CHECKED BY SM | | | s | | | | | | | | Water | RL
(m) | (m) https://deachie.com/ | Classification
Symbol | Material Description | | Samples
Tests
Remarks | Additional Observations | | | | | | FILL; sandy CLAY, brown, high plasticity, moist, medium rootlets, soft | n grained sands, gravels, | SAQP13-BH02_0
XRF 117ppm | | | | | | | Gravelly CLAY; light brown, high plasticity, moist, mediu | m grained sands, fine gravels | SAQP13-BH02_0
XRF 189ppm | .25 | | | | | | CLAY; light brown with grey/orange mottles, high plastic | ity, firm-hard, moist | SAQP13-BH02 (|).5 | | | | -/// | | | | XRF 118ppm | 75 | | | | -/// | | | | SAQP13-BH02_0
XRF 94ppm | ./p | | \perp | | 1 | | | | SAQP13-BH02_1 | .d, | | | | | | Borehole SAQP13-BH02 terminated at 1m | | XRF 68ppm | - | | | | | | | | | - | | | | | | | | | 2 | - | | | | | | | | | 3 | - | | | | | | | | | 4 | - | | | | | | | 1 | | - | | | | | | | | | 5 | | | | | | | | | | | | | | | | | 1 | | | 1 | | | | | | | | 1 | 6 | | | | | | | | | | | | | | | | | | 6 | | | | | | | | | 6 | | | | | | | | | 6 | | | | | | | | | 6 | | | | | | | | | 6 | | | | | | | | | 6 | | | | | | | | | 6 | | | | | | | CI | .IENT | Г _De | epartm | ent of | Regio | nal NSW | PROJECT NAME Capta | ins Flat Lead Ma | nagement Plan | |--|-------|-----------|--------------|-------------|--------------------------
--|------------------------------------|---|---| | PF | ROJE | CT N | UMBE | R <u>31</u> | 80011 | 193 | PROJECT LOCATION _C | Captains Flat, NS\ | <u>N</u> | | D | ATE S | STAR | TED | 10/6/ | 21 | COMPLETED 10/6/21 | R.L. SURFACE | | ATUM | | | | | | | | ratacore Pty Ltd | | | | | | | | | | | | | | | | н | DLE S | SIZE | 0.1m | | | | LOGGED BY TJF | c | HECKED BY SM | | | OTES | | | | | | | | | | Method | Water | RL
(m) | Depth
(m) | Graphic Log | Classification
Symbol | Material Descriptio | | Samples
Tests
Remarks | Additional Observations | | BUREHULE / IEST PIT 318001193 CAPTAINS FLAT JUNE 2021.GPJ GINT STD AUSTRALIA.GDT 19/8/21 | | | 1) | | | FILL; gravelly CLAY, light brown, coarse gravels, low grained sands FILL; gravelly CLAY, red, well graved gravels, mediu grained sands CLAY; natural, light brown with grey mottles, high plate broken before the same and s | im plasticity, firm, moist, medium | SAQP13_0.0 XRF 975ppm, D6 XRF 1175ppm SAQP13_0.25 XRF 1279ppm SAQP913_0.5 XRF 1865ppm SAQP13_1.0 XRF 107ppm | Minor brick fragments, some shale fragments Minor brick fragments, some shale fragments | BOREHOLE / TEST PIT 318001193 CAPTAINS FLAT JUNE 2021.GPJ GINT STD AUSTRALIA.GDT 19/8/21 ### **BOREHOLE NUMBER SAQP13-BH04** | CLI | ENT | _ De | partm | ent of | Region | nal NSW | PROJECT NAME Capta | ins Flat Lead Ma | nagement Plan | |--------|-------|-----------|--------------|-------------|--------------------------|--|----------------------------------|------------------------------|-------------------------| | | | | | | 180011 | | PROJECT LOCATION _C | COMPLETED _10/6/21 F | | | | | | | | | | | ratacore Pty Ltd S | | | | | EQ | JIPN | /IENT | _Pus | h Tub | е | | OLE LOCATION | | | | НО | LE S | SIZE | 0.1m | | | L | OGGED BY TJF | | CHECKED BY SM | | NO | TES | | | | | | | | | | Method | Water | RL
(m) | Depth
(m) | Graphic Log | Classification
Symbol | Material Description | | Samples
Tests
Remarks | Additional Observations | | | | | | XXX | | FILL; gravelly CLAY, light brown, coarse gravels, low pl grained sands | asticity, soft, moist, medium | SAQP13-BH04_0
XRF 700ppm | .0 | | | | | | \bowtie | | FILL; gravelly CLAY, red, well graved gravels, medium | placticity firm moiet modium | SAQP13-BH04_0.
XRF6138ppm | 25 | | | | | | XX | | grained sands | plasticity, IIIII, moist, medium | SAQP13-BH04_0 | .5 | | | | | | \bowtie | | Becoming softer and wetter with depth | | XRF 2616ppm | | | | | | | | | | | 0405455 | | | - | | | 1 | | | CLAY; natural, light brown with grey mottles, high plasti
Borehole SAQP13-BH04 terminated at 1m | city, tirm, moist | SAQP13-BH04_1
XRF 288ppm | .0 | 2 | 3 | _ | | | | | | | | | | | - | | | | | | | | | | | - | | | | | | | | | | | _ | | | | | | | | | | | 4 | | | | | | | | | | | - | _ | 5 | <u>6</u> | 7 | 1 . | | | | | | | | | | | •• | | | | | | | |--|--------|--------------|--------------|--------------|--------------------------|---|--------------------------------|-----------------------------|-------------------------| | CL | .IEN1 | Γ _D∈ | epartm | ent of | Regio | nal NSW | PROJECT NAME _Capta | ins Flat Lead Ma | anagement Plan | | PF | ROJE | CT N | UMBE | R _31 | 180011 | 193 | PROJECT LOCATION(| Captains Flat, NS | SW | | DA | ATE S | STAR | TED _ | 10/6/ | 21 | COMPLETED 10/6/21 | R.L. SURFACE | | DATUM | | DF | RILLII | NG C | ONTR | ACTO | R St | ratacore Pty Ltd | SLOPE 90° | | BEARING | | | | | | | | | | | | | н | DLE S | SIZE | 0.1m | l | | | LOGGED BY TJF | | CHECKED BY SM | | NC | TES | | | | | | | | | | Method | Water | RL
(m) | Depth
(m) | Graphic Log | Classification
Symbol | Material Descriptio | | Samples
Tests
Remarks | Additional Observations | | | | | | \bigotimes | | FILL; silty SAND, brown, dense, low plasticity silts, r | | SAQP9-BH01_0
XRF 764ppm | | | | | | | | | FILL; gravelly CLAY, red-brown, high plasticity, fine | gravels and sands, moist, firm | SAQP9-BH01_0.
XRF 103ppm | | | | | | | \ggg | | | | SAQP9-BH01_0
XRF 349ppm | .5 | | | | | _ | | | CLAY; natural, light grey with red and orange mottle | s, nard, becoming bedrock | | | | \perp | | | 1 | | | Borehole SAQP9-BH01 terminated at 1m | | SAQP9-BH01_1 | .0 | | | | | - | | | DOLEHOIS SAMES-BUTT (SITHINGISED ALTIM | | XRF 19ppm | | | | | | - | | | | | | | | | | | _ | | | | | | | | | | | _ | | | | | | | | | | | 2 | | | | | | | | | | | _ | | | | | | | | | | | - | | | | | | | | | | | _ | | | | | | | | | | | 3 | _ | | | | | | | | 9/8/2 | | | 4 | | | | | | | | DT 1 | | | _ | | | | | | | | ILIA.G | | | - | | | | | | | | STRA | | | - | | | | | | | | D AU | | | - | | | | | | | | S LN | | | 5 | | | | | | | | 2
0 | | | - | | | | | | | | 21.GF | | | - | | | | | | | | VE 20 | | | - | | | | | | | | | | | 6 | | | | | | | | SFLA | | | | | | | | | | | TAIN | | | | | | | | | | | 3 CAF | | | | | | | | | | | 00119. | | | - | | | | | | | | 3180 | | | 7 | | | | | | | | | | | - | | | | | | | | LES. | | | _ | | | | | | | | BOREHOLE / TEST PIT 318001193 CAPTAINS FLAT JUNE 2021.GPJ GINT STD AUSTRALIA.GDT 19/8/21 | | | - | | | | | | | | REH | | | - | | | | | | | | M . | | | 8 | | | | | | | | | | | • • | | | | | | | |--|-------|-----------|--------------|--------------|--------------------------|---|---------------------------|---|-------------------------| | CL | .IEN1 | Γ _De | epartme | ent of | Regio | nal NSW | PROJECT NAME Capta | ins Flat Lead M | anagement Plan | | PR | ROJE | CT N | UMBEI | R _31 | 18001 | 193 | PROJECT LOCATION _(| Captains Flat, NS | SW | | DA | ATE S | STAR | TED | 10/6/ | 21 | COMPLETED 10/6/21 | R.L. SURFACE | | DATUM | | | | | | | | ratacore Pty Ltd | OTES | | | | | | | | | | Method | Water | RL
(m) | Depth
(m) | Graphic Log | Classification
Symbol | Material Description | | Samples
Tests
Remarks | Additional Observations | | | | | | \bowtie | | FILL; silty SAND, brown, dense, low plasticity silts, r FILL; gravelly CLAY, red-brown, high plasticity, fine | | XRF 230ppm
SAQP9-BH02 0. | | | | | | | >>> | | CLAY; natural, light grey with red and orange mottle | | XRF 55ppm
SAQP9-BH02 0 | | | | | | _ | | | CLAT, Hatural, light grey with red and drange motile | s, nard, becoming bedrock | XRF <lod< td=""><td></td></lod<> | | | | | | | | | | | SAQP9-BH02_0.
XRF <lod< td=""><td>75</td></lod<> | 75 | | _ | - | | 1 | | | Borehole SAQP9-BH02
terminated at 1m | | SAQP9-BH02_1
XRF <lod< td=""><td>.0</td></lod<> | .0 | | | | | | | | DOIGNOE OMOFS-DI 102 LETTIMATEU AL TITI | | ANT SLOD | | | | | | - | | | | | | | | | | | _ | | | | | | | | | | | - | | | | | | | | | | | 2 | | | | | | | | | | | _ | | | | | | | | | | | _ | | | | | | | | | | | - | | | | | | | | | | | - | | | | | | | | | | | 3 | | | | | | | | | | | - | - | | | | | | | | 1 5 | | | 4 | | | | | | | | - | | | - | | | | | | | | 9 | 5 | 6 | _ | | | | | | | | 5 | 7 | | | | | | | | | | | | | | | | | | | į | | | | | | | | | | | בסוגדווטבר, ובסונון סומסונוסס כאן ועוואס ובען סמאב בסבונים יס מואן סוב אססונאבראינסדן ומיטבו | | | | | | | | | | | إ | | | | | | | | | | | į | | | 8 | | | | | | | | | | | | ent of | Regio | nal NSW | | | | |--------|-------|-----------|----------------|-------------|--------------------------|---|------------------------------------|---|-------------------------| | PR | OJE | CT N | UMBE | R _31 | 18001 | 193 | PROJECT LOCATION _0 | Captains Flat, NS | W | | DA | TE S | STAR | TED | 10/6/ | 21 | COMPLETED 10/6/21 | R.L. SURFACE | | DATUM | | | | | | | | ratacore Pty Ltd | LOGGED BY _TJF | | CHECKED BY SM | | NC | TES | | | | | | | 1 | T | | Method | Water | RL
(m) | Depth
(m) | Graphic Log | Classification
Symbol | Material Descri | otion | Samples
Tests
Remarks | Additional Observations | | | | | | \bowtie | | FILL; silty SAND, brown, dense, low plasticity silt | s, medium grained, rootlets, moist | SAQP9-BH03_0
XRF 2359ppm | | | | | | | \ggg | | FILL; gravelly CLAY, red-brown, high plasticity, fi | | SAQP9-BH03_0.
XRF 39ppm | | | | | | _ | | | CLAY; natural, light grey with red and orange mo | ttles, hard, becoming bedrock | SAQP9-BH03_0
RF 12ppm | .5 | | | | | _ | | | | | SAQP9-BH03_0.
XRF <lod< td=""><td>75</td></lod<> | 75 | | | | | 1 | | | | | SAQP9-BH03_1 | .0 | | | | | _ | | | Borehole SAQP9-BH03 terminated at 1m | | XRF <lod< td=""><td></td></lod<> | | | | | | _ | | | | | | | | | | | _ | | | | | | | | | | | _ | | | | | | | | | | | 2 | | | | | | | | | | | _ | | | | | | | | | | | _ | | | | | | | | | | | _ | | | | | | | | | | | _ | | | | | | | | | | | 3 | | | | | | | | | | | _ | | | | | | | | | | | - | | | | | | | | | | | _ | | | | | | | | | | | - | | | | | | | | | | | 4 | | | | | | | | | | | - | | | | | | | | | | | - | | | | | | | | | | | - | | | | | | | | | | | - | | | | | | | | | | | 5 | | | | | | | | | | | - | | | | | | | | | | | - | | | | | | | | | | | - | | | | | | | | | | | - | | | | | | | | | | | 6 | | | | | | | | | | | - | | | | | | | | | | | - | | | | | | | | | | | - | | | | | | | | | | | 7 | | | | | | | | | | | ' - | | | | | | | | | | | - | | | | | | | | | | | - | | | | | | | | | | | - | | | | | | | | | | | 8 | | | | | | | | | | | | | | nal NSW
193 | | | | |--------|-------|-----------|--------------|-------------|--------------------------|--|-----------------------------------|--|-------------------------| | | | | | | | COMPLETED 10/6/21 | | • | | | | | | | | | ratacore Pty Ltd | | | | | | | | | | | ratacore i ty Ltu | | | | | | | | | | | | | | | | | ΓES | Method | Water | RL
(m) | Depth
(m) | Graphic Log | Classification
Symbol | Material Descrip | tion | Samples
Tests
Remarks | Additional Observations | | | | | | XX | | FILL; silty SAND, brown, dense, low plasticity silts | , medium grained, rootlets, moist | SAQP9-BH04_0
XRF450ppm | | | | | | | | | FILL; gravelly CLAY, red-brown, high plasticity, fin | e gravels and sands, moist, firm | SAQP9-BH04_0.
XRF 1256ppm
SAQP9-BH04_0 | ı
.5 | | | | | | | | CLAY; natural, light grey with red and orange mott | les, hard, becoming bedrock | XRF 365ppm
SAQP9-BH04 0. | | | | | | - | | | | | XRF 238ppm | | | | | | | | | Borehole SAQP9-BH04 terminated at 1m | | SAQP9-BH04_1
XRF 229ppm | 2 | _ | | | | | | | | | | | - | | | | | | | | | | | 3 | | | | | | | | | | | - | | | | | | | | | | | - | | | | | | | | | | | - | | | | | | | | | | | 4 | | | | | | | | | | | 4 | 5 | - | | | | | | | | | | | - | | | | | | | | | | | - | | | | | | | | | | | 6 | | | | | | | | | | | - | 7 | | | | | | | | | | | ' | 8 | | | | | | | | CLI | CLIENT Department of Regional NSW PROJECT NUMBER 318001193 | | | | | | | | | | | | |--------|--|-----------|-----------|-------------|--------------------------|--|------------------------------------|---|-------------------------|--|--|--| | PR | OJE | CT N | UMBE | R _31 | 180011 | 193 | PROJECT LOCATION _(| Captains Flat, NS | SW | | | | | DA | TE S | STAR | TED _ | 10/6/ | 21 | COMPLETED 10/6/21 | R.L. SURFACE | | DATUM | | | | | | | | | | | ratacore Pty Ltd | LOGGED BYTJF | | CHECKED BY SM | | | | | NO | TES | | 1 | | | <u> </u> | | | | | | | | Method | Water | RL
(m) | Depth (m) | Graphic Log | Classification
Symbol | Material Descrip | Material Description | | Additional Observations | | | | | | | | | \bowtie | | FILL; silty SAND, brown, dense, low plasticity silts | s, medium grained, rootlets, moist | SAQP9-BH05_0
XRF 529ppm | | | | | | | | | | XX | | FILL; gravelly CLAY, red-brown, high plasticity, fir | | SAQP9-BH05_0.:
XRF 96ppm | | | | | | | | | | | | CLAY; natural, light grey with red and orange mot | tles, hard, becoming bedrock | SAQP9-BH05_0
XRF 13ppm | .5 | | | | | | | | | | | | | SAQP9-BH05_0.
XRF <lod< td=""><td>75</td></lod<> | 75 | | | | | | | | 1 | | | | | SAQP9-BH05_1 | .0 | | | | | | | | | | | Borehole SAQP9-BH05 terminated at 1m | | XRF <lod< td=""><td></td></lod<> | | | | | | | | | _ | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | 3 | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | - | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | - | | | | | | | | | | | | | | 4 | | | | | | | | | | | | | | - | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | - | | | | | | | | | | | | | | 5 | 6 | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | 7 | | | | | | | | | | | | | | - | | | | | | | | | | | | | | - | | | | | | | | | | | | | | - | | | | | | | | | | | | | | _ | | | | | | | | | | ## APPENDIX 6 NATA ACCREDITED LABORATORY REPORTS Ramboll Environ Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060 NATA Accredited Accreditation Number 1261 Site Number 18217 Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates. Attention: Stephen Maxwell Report 805698-S Project name ADDITIONAL - CAPTAINS FLAT LEAD MANAGEMENT PLAN Project ID 318001193 Received Date Jun 23, 2021 | Client Sample ID | | | QA01 | QA02 | QA07 | QA08 | | |---------------------|-----|-------|--------------|--------------|--------------|---------------------|--| | Sample Matrix | | | Soil | Soil | Soil | Soil
S21-Jn50359 | | | Eurofins Sample No. | | | S21-Jn50356 | S21-Jn50357 | S21-Jn50358 | | | | Date Sampled | | | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | | | Test/Reference | LOR | Unit | | | | | | | Heavy Metals | | | | | | | | | Aluminium | 20 | mg/kg | 4600 | 2600 | 3900 | 6000 | | | Arsenic | 2 | mg/kg | 6.9 | 37 | 97 | 22 | | | Barium | 10 | mg/kg | 66 | 240 | 390 | 320 | | | Cadmium | 0.4 | mg/kg | 0.5 | < 0.4 | 0.6 | 1.4 | | | Chromium | 5 | mg/kg | 9.8 | < 5 | 11 | 8.9 | | | Cobalt | 5 | mg/kg | < 5 | < 5 | < 5 | < 5 | | | Copper | 5 | mg/kg | 51 | 99 | 400 | 110 | | | Iron | 20 | mg/kg | 10000 | 16000 | 44000 | 15000 | | | Lead | 5 | mg/kg | 120 | 730 | 2300 | 550 | | | Manganese | 5 | mg/kg | 180 | 230 | 77 | 250 | | | Mercury | 0.1 | mg/kg | < 0.1 | 0.2 | 0.2 | < 0.1 | | | Molybdenum | 5 | mg/kg | < 5 | < 5 | 5.7 | < 5 | | | Nickel | 5 | mg/kg | 9.1 | < 5 | < 5 | < 5 | | | Selenium | 2 | mg/kg | 2.3 | 2.1 | 3.2 | < 2 | | | Titanium | 10 | mg/kg | 460 | 55 | 78 | 120 | | | Zinc | 5 | mg/kg | 1200 | 1600 | 2500 | 510 | | | % Moisture | 1 | % | 3.9 | 6.6 | 6.3 | 36 | | | Client Sample ID
Sample Matrix
Eurofins Sample No.
Date Sampled | | | QA11
Soil
S21-Jn50360
Jun 03, 2021 | QA13
Soil
S21-Jn50361
Jun 03, 2021 | QA17
Soil
S21-Jn50362
Jun 03, 2021 | QA18
Soil
S21-Jn50363
Jun 03, 2021 |
--|-----|-------|---|---|---|---| | Test/Reference | LOR | Unit | | | | | | Heavy Metals | | | | | | | | Aluminium | 20 | mg/kg | 7700 | 5200 | 1600 | 3000 | | Arsenic | 2 | mg/kg | 8.0 | 23 | 14 | 30 | | Barium | 10 | mg/kg | 120 | 390 | 260 | 720 | | Cadmium | 0.4 | mg/kg | < 0.4 | 0.9 | 0.7 | 1.5 | | Chromium | 5 | mg/kg | 15 | 8.7 | < 5 | < 5 | | Cobalt | 5 | mg/kg | 7.5 | 5.6 | < 5 | < 5 | | Copper | 5 | mg/kg | 25 | 57 | 180 | 430 | | Iron | 20 | mg/kg | 22000 | 17000 | 12000 | 26000 | | Lead | 5 | mg/kg | 93 | 360 | 710 | 1900 | | Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled | | | QA11
Soil
S21-Jn50360
Jun 03, 2021 | QA13
Soil
S21-Jn50361
Jun 03, 2021 | QA17
Soil
S21-Jn50362
Jun 03, 2021 | QA18
Soil
S21-Jn50363
Jun 03, 2021 | |---|------|----------|---|---|---|---| | Test/Reference | LOR | Unit | | | | | | Heavy Metals | | | | | | | | Manganese | 5 | mg/kg | 190 | 1300 | 110 | 210 | | Mercury | 0.1 | mg/kg | < 0.1 | 0.2 | < 0.1 | < 0.1 | | Molybdenum | 5 | mg/kg | < 5 | < 5 | < 5 | 7.0 | | Nickel | 5 | mg/kg | 11 | 8.3 | < 5 | < 5 | | Selenium | 2 | mg/kg | 2.1 | < 2 | < 2 | 2.9 | | Titanium | 10 | mg/kg | 170 | 94 | 67 | 110 | | Zinc | 5 | mg/kg | 470 | 1000 | 3000 | 9400 | | | | | | | | | | % Moisture | 1 | % | 1.8 | 19 | 3.7 | 4.3 | | % Clay | 1 | % | 1.0 | - | - | - | | Conductivity (1:5 aqueous extract at 25°C as rec.) | 10 | uS/cm | 310 | - | - | - | | pH (1:5 Aqueous extract at 25°C as rec.) | 0.1 | pH Units | 6.4 | - | - | - | | Cation Exchange Capacity | | | | | | | | Cation Exchange Capacity | 0.05 | meq/100g | 9.9 | - | - | - | | Client Sample ID Sample Matrix | | | QA21
Soil | QA24
Soil | QA25
Soil | QA26
Soil | |--|------|----------|--------------|--------------|--------------|--------------| | Eurofins Sample No. | | | S21-Jn50364 | S21-Jn50365 | S21-Jn50366 | S21-Jn50367 | | Date Sampled | | | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | | Test/Reference | LOR | Unit | | | | | | Heavy Metals | | | | | | | | Aluminium | 20 | mg/kg | 18000 | 9200 | 8600 | 6700 | | Arsenic | 2 | mg/kg | 11 | 83 | 69 | 21 | | Barium | 10 | mg/kg | 120 | 460 | 370 | 75 | | Cadmium | 0.4 | mg/kg | < 0.4 | < 0.4 | < 0.4 | < 0.4 | | Chromium | 5 | mg/kg | 27 | 13 | 14 | 13 | | Cobalt | 5 | mg/kg | 20 | < 5 | < 5 | < 5 | | Copper | 5 | mg/kg | 22 | 260 | 230 | 41 | | Iron | 20 | mg/kg | 32000 | 42000 | 43000 | 22000 | | Lead | 5 | mg/kg | 34 | 2400 | 2300 | 260 | | Manganese | 5 | mg/kg | 230 | 87 | 89 | 56 | | Mercury | 0.1 | mg/kg | < 0.1 | 0.3 | 0.3 | < 0.1 | | Molybdenum | 5 | mg/kg | < 5 | < 5 | < 5 | < 5 | | Nickel | 5 | mg/kg | 16 | 5.3 | 5.2 | 5.3 | | Selenium | 2 | mg/kg | 5.5 | 3.9 | 4.3 | 2.3 | | Titanium | 10 | mg/kg | 130 | 290 | 320 | 71 | | Zinc | 5 | mg/kg | 59 | 250 | 230 | 74 | | | | | | | | | | % Moisture | 1 | % | 32 | 14 | 14 | 26 | | % Clay | 1 | % | 8.0 | - | - | 7.0 | | Conductivity (1:5 aqueous extract at 25°C as rec.) | 10 | uS/cm | 33 | - | - | 19 | | pH (1:5 Aqueous extract at 25°C as rec.) | 0.1 | pH Units | 6.2 | - | - | 5.1 | | Cation Exchange Capacity | | | | | | | | Cation Exchange Capacity | 0.05 | meq/100g | 16 | - | - | 1.9 | | Client Sample ID | | | QA30 | QA33 | QA40 | QA43 | |--|------|----------|--------------|--------------|--------------|--------------| | Sample Matrix | | | Soil | Soil | Soil | Soil | | Eurofins Sample No. | | | S21-Jn50368 | S21-Jn50369 | S21-Jn50370 | S21-Jn50371 | | Date Sampled | | | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | | Test/Reference | LOR | Unit | | | | | | Heavy Metals | | | | | | | | Aluminium | 20 | mg/kg | 8500 | 4600 | 14000 | 6400 | | Arsenic | 2 | mg/kg | 38 | 8.9 | 2.4 | 8.0 | | Barium | 10 | mg/kg | 400 | 57 | 63 | 43 | | Cadmium | 0.4 | mg/kg | 0.6 | < 0.4 | < 0.4 | < 0.4 | | Chromium | 5 | mg/kg | 8.1 | < 5 | 22 | 8.9 | | Cobalt | 5 | mg/kg | < 5 | < 5 | 8.8 | < 5 | | Copper | 5 | mg/kg | 230 | 47 | 17 | 13 | | Iron | 20 | mg/kg | 21000 | 11000 | 22000 | 13000 | | Lead | 5 | mg/kg | 2100 | 240 | 24 | 90 | | Manganese | 5 | mg/kg | 230 | 78 | 180 | 190 | | Mercury | 0.1 | mg/kg | 0.4 | < 0.1 | < 0.1 | < 0.1 | | Molybdenum | 5 | mg/kg | < 5 | < 5 | < 5 | < 5 | | Nickel | 5 | mg/kg | 6.8 | < 5 | 16 | < 5 | | Selenium | 2 | mg/kg | 3.5 | 2.3 | 3.4 | < 2 | | Titanium | 10 | mg/kg | 250 | 470 | 280 | 270 | | Zinc | 5 | mg/kg | 690 | 140 | 59 | 86 | | | | | | | | | | % Moisture | 1 | % | 14 | 2.3 | 12 | 11 | | % Clay | 1 | % | - | - | 9.0 | < 1 | | Conductivity (1:5 aqueous extract at 25°C as rec.) | 10 | uS/cm | - | - | < 10 | 12 | | pH (1:5 Aqueous extract at 25°C as rec.) | 0.1 | pH Units | - | - | 5.9 | 5.5 | | Cation Exchange Capacity | | | | | | | | Cation Exchange Capacity | 0.05 | meq/100g | - | _ | 5.4 | 2.4 | | Client Sample ID | | | QA44 | QA101 | QA102 | QA103 | |---------------------|-----|-------|--------------|--------------|--------------|--------------| | Sample Matrix | | | Soil | Soil | Soil | Soil | | Eurofins Sample No. | | | S21-Jn50372 | S21-Jn50373 | S21-Jn50374 | S21-Jn50375 | | Date Sampled | | | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | | Test/Reference | LOR | Unit | | | | | | Heavy Metals | | | | | | | | Aluminium | 20 | mg/kg | 5900 | 6100 | 12000 | 12000 | | Arsenic | 2 | mg/kg | 6.5 | 94 | 62 | 67 | | Barium | 10 | mg/kg | 46 | 32 | 38 | 54 | | Cadmium | 0.4 | mg/kg | < 0.4 | < 0.4 | 0.7 | 0.7 | | Chromium | 5 | mg/kg | 14 | 19 | 59 | 37 | | Cobalt | 5 | mg/kg | 11 | < 5 | < 5 | < 5 | | Copper | 5 | mg/kg | 20 | 72 | 240 | 260 | | Iron | 20 | mg/kg | 20000 | 24000 | 39000 | 30000 | | Lead | 5 | mg/kg | 27 | 9800 | 9800 | 12000 | | Manganese | 5 | mg/kg | 99 | 29 | 28 | 29 | | Mercury | 0.1 | mg/kg | < 0.1 | 0.2 | 0.2 | 0.1 | | Molybdenum | 5 | mg/kg | < 5 | < 5 | < 5 | < 5 | | Nickel | 5 | mg/kg | 9.8 | < 5 | < 5 | 5.1 | | Selenium | 2 | mg/kg | 3.6 | 6.8 | 9.5 | 9.9 | | Titanium | 10 | mg/kg | 200 | 140 | 170 | 160 | | Zinc | 5 | mg/kg | 54 | 86 | 360 | 390 | | Client Sample ID
Sample Matrix | | | QA44
Soil | QA101
Soil | QA102
Soil | QA103
Soil | |--|------|----------|--------------|---------------|---------------|---------------| | Eurofins Sample No. | | | S21-Jn50372 | S21-Jn50373 | S21-Jn50374 | S21-Jn50375 | | Date Sampled | | | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | | Test/Reference | LOR | Unit | | | | | | | | | | | | | | % Moisture | 1 | % | 20 | 12 | 15 | 15 | | % Clay | 1 | % | 2.0 | - | - | - | | Conductivity (1:5 aqueous extract at 25°C as rec.) | 10 | uS/cm | < 10 | - | - | - | | pH (1:5 Aqueous extract at 25°C as rec.) | 0.1 | pH Units | 5.2 | _ | - | - | | Cation Exchange Capacity | | | | | | | | Cation Exchange Capacity | 0.05 | meq/100g | 0.60 | - | - | - | | Client Sample ID
Sample Matrix | | | QA109
Soil | QA110
Soil | QA113
Soil | QA114
Soil | |--|------|----------|---------------|---------------|---------------|---------------| | Eurofins Sample No. | | | S21-Jn50377 | S21-Jn50378 | S21-Jn50379 | S21-Jn50380 | | Date Sampled | | | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | | Test/Reference | LOR | Unit | | | | | | Heavy Metals | • | • | | | | | | Aluminium | 20 | mg/kg | 15000 | 9600 | 13000 | 31000 | | Arsenic | 2 | mg/kg | 10 | 16 | 18 | 8.5 | | Barium | 10 | mg/kg | 140 | 160 | 170 | 200 | | Cadmium | 0.4 | mg/kg | < 0.4 | < 0.4 | < 0.4 | < 0.4 | | Chromium | 5 | mg/kg | 15 | 12 | 15 | 22 | | Cobalt | 5 | mg/kg | 7.0 | 8.3 | 7.7 | 8.0 | | Copper | 5 | mg/kg | 22 | 26 | 31 | 23 | | Iron | 20 | mg/kg | 23000 | 20000 | 25000 | 29000 | | Lead | 5 | mg/kg | 92 | 170 | 160 | 38 | | Manganese | 5 | mg/kg | 330 | 590 | 500 | 92 | | Mercury | 0.1 | mg/kg | 0.1 | 0.1 | 0.1 | < 0.1 | | Molybdenum | 5 | mg/kg | < 5 | < 5 | < 5 | < 5 | | Nickel | 5 | mg/kg | 11 | 11 | 16 | 19 | | Selenium | 2 | mg/kg | 4.2 | 3.7 | 4.3 | 6.3 | | Titanium | 10 | mg/kg | 190 | 110 | 140 | 280 | | Zinc | 5 | mg/kg | 110 | 160 | 210 | 60 | | | | | | | | | | % Moisture | 1 | % | 39 | 40 | 26 | 22 | | % Clay | 1 | % | 8.0 | 7.0 | 7.0 | 16 | | Conductivity (1:5 aqueous extract at 25°C as rec.) | 10 | uS/cm | 67 | 30 | 20 | 11 | | pH (1:5 Aqueous extract at 25°C as rec.) | 0.1 | pH Units | 5.9 | 5.8 | 5.9 | 6.5 | | Cation Exchange Capacity | | | | | | | | Cation Exchange Capacity | 0.05 | meq/100g | 12 | 11 | 7.2 | 13 | | Client Sample ID | | | GW4_0.2 | GW7_0.2 | GW8_0.2 | SAQP11-
BH01_0.0 | | |---------------------|-----|-------------|--------------|--------------|--------------|---------------------|--| | Sample Matrix | | | Soil | Soil | Soil | Soil | | | Eurofins Sample No. | | S21-Jn50381 | | S21-Jn50382 | S21-Jn50383 | S21-Jn50384 | | | Date Sampled | | | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | | | Test/Reference | LOR | Unit | | | | | | | Heavy Metals | | | | | | | | | Aluminium | 20 | mg/kg | 5700 | 3900 | 14000 | 13000 | | | Arsenic | 2 | mg/kg | 130 | 37 | 61 | 40 | | | Barium | 10 | mg/kg | 590 | 120 | 250 | 220 | | | Cadmium | 0.4 | mg/kg | < 0.4 | < 0.4 | 0.8 | 0.4 | | | Chromium | 5 | mg/kg | 8.5 | 7.0 | 8.6 | 11 | | | Cobalt | 5 | mg/kg | < 5 | 6.9 | 12 | < 5 | | | Copper | 5 | mg/kg | 280 | 61 | 29 | 210 | | | Iron | 20 | mg/kg | 36000 | 27000 | 31000 | 26000 | | | Lead | 5 | mg/kg | 2700 | 920 | 1500 | 2500 | | | Manganese | 5 | mg/kg |
59 | 1100 | 600 | 120 | | | Mercury | 0.1 | mg/kg | 0.5 | 0.1 | 0.2 | 0.2 | | | Molybdenum | 5 | mg/kg | 5.1 | < 5 | < 5 | < 5 | | | Nickel | 5 | mg/kg | < 5 | 29 | 29 | 5.8 | | | Selenium | 2 | mg/kg | 3.3 | 4.2 | 7.9 | 5.0 | | | Titanium | 10 | mg/kg | 140 | 68 | 270 | 470 | | | Zinc | 5 | mg/kg | 700 | 340 | 1000 | 480 | | | | | | | | | | | | % Moisture | 1 | % | 16 | 6.0 | 17 | 22 | | | Client Sample ID | | | SAQP11-
BH03_0.0 | SAQP11-
BH10_0.0 | SAQP9-
BH03_0.0 | SAQP9-
BH04_0.25 | | |---------------------|-----|-------|---------------------|---------------------|--------------------|---------------------|--| | Sample Matrix | | | Soil | Soil | Soil | Soil | | | Eurofins Sample No. | | | S21-Jn50385 | S21-Jn50386 | S21-Jn50387 | S21-Jn50388 | | | Date Sampled | | | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | | | Test/Reference | LOR | Unit | | | | | | | Heavy Metals | | • | | | | | | | Aluminium | 20 | mg/kg | 11000 | 7800 | 9000 | 7900 | | | Arsenic | 2 | mg/kg | 26 | 41 | 170 | 90 | | | Barium | 10 | mg/kg | 270 | 340 | 120 | 440 | | | Cadmium | 0.4 | mg/kg | 1.6 | 3.9 | < 0.4 | 0.8 | | | Chromium | 5 | mg/kg | 10 | 14 | 9.0 | 11 | | | Cobalt | 5 | mg/kg | 5.1 | 11 | < 5 | < 5 | | | Copper | 5 | mg/kg | 180 | 330 | 410 | 390 | | | Iron | 20 | mg/kg | 21000 | 15000 | 51000 | 41000 | | | Lead | 5 | mg/kg | 1300 | 1200 | 7300 | 4300 | | | Manganese | 5 | mg/kg | 190 | 650 | 94 | 140 | | | Mercury | 0.1 | mg/kg | 0.1 | 0.2 | 2.1 | 0.6 | | | Molybdenum | 5 | mg/kg | < 5 | < 5 | 5.8 | < 5 | | | Nickel | 5 | mg/kg | 7.6 | 9.8 | < 5 | < 5 | | | Selenium | 2 | mg/kg | 4.1 | 4.2 | 8.3 | 3.8 | | | Titanium | 10 | mg/kg | 510 | 130 | 200 | 300 | | | Zinc | 5 | mg/kg | 460 | 1200 | 280 | 2500 | | | O/ Matakana | 4 | 0/ | 0.4 | 05 | 40 | 40 | | | % Moisture | 1 | % | 24 | 25 | 12 | 12 | | | Client Sample ID | | | | SAQP10-
BH02_0.25 | SAQP13-
BH02_0.0 | |---------------------|---|-----|-------|----------------------|---------------------| | Sample Matrix | | | | Soil | Soil | | Eurofins Sample No. | | | | S21-Jn50389 | S21-Jn50390 | | Date Sampled | | | | Jun 03, 2021 | Jun 03, 2021 | | Test/Reference | L | .OR | Unit | | | | Heavy Metals | | | | | | | Aluminium | | 20 | mg/kg | 4900 | 11000 | | Arsenic | | 2 | mg/kg | 56 | 23 | | Barium | | 10 | mg/kg | 1400 | 240 | | Cadmium | (| 0.4 | mg/kg | 2.9 | 0.5 | | Chromium | | 5 | mg/kg | 6.8 | 21 | | Cobalt | | 5 | mg/kg | < 5 | 12 | | Copper | | 5 | mg/kg | 780 | 56 | | Iron | | 20 | mg/kg | 42000 | 19000 | | Lead | | 5 | mg/kg | 3600 | 770 | | Manganese | | 5 | mg/kg | 230 | 550 | | Mercury | (| 0.1 | mg/kg | 0.3 | 0.2 | | Molybdenum | | 5 | mg/kg | 7.9 | 5.2 | | Nickel | | 5 | mg/kg | 5.5 | 18 | | Selenium | | 2 | mg/kg | < 2 | 2.3 | | Titanium | | 10 | mg/kg | 150 | 200 | | Zinc | | 5 | mg/kg | 19000 | 530 | | | | | | | | | % Moisture | | 1 | % | 7.6 | 40 | ### Sample History Where samples are submitted/analysed over several days, the last date of extraction is reported. If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time. | Description Heavy Metals | Testing Site
Sydney | Extracted
Jun 25, 2021 | Holding Time
180 Days | |---|-------------------------------|---------------------------|---------------------------------| | - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS Metals M8 | Sydney | Jun 25, 2021 | 180 Days | | - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS % Clay | Brisbane | Jun 30, 2021 | 14 Days | | - Method: LTM-GEN-7040
pH (1:5 Aqueous extract at 25°C as rec.) | Sydney | Jun 25, 2021 | 7 Days | | - Method: LTM-GEN-7090 pH in soil by ISE Moisture | Sydney | Jun 25, 2021 | 14 Days | | - Method: LTM-GEN-7080 Moisture Conductivity (1:5 aqueous extract at 25°C as rec.) | Sydney | Jun 29, 2021 | 7 Days | | - Method: LTM-INO-4030 Conductivity Cation Exchange Capacity | Melbourne | Jun 29, 2021 | 180 Days | Report Number: 805698-S 6 Monterey Road Dandenong South VIC 3175 1 Phone: +61 3 8564 5000 L NATA # 1261 Melbourne **Environment Testing** eurofins 💸 Sydney Unit F3, Building F 16 Mars Road 1/21 Smallwood Place Murarrie QLD 4172 5 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 318001193 805698 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Do Sox 60 Wickham 2293 Phone: +612 4968 8448 NATA # 1261 Site # 25079 Perth 46-48 Banksia Road Welshool WA 6106 Phone: +618 9251 9600 NATA # 1261 Site # 23736 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Site # 1254 ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway North Sydney NSW 2060 318001193 Project Name: Project ID: Ramboll Australia Pty Ltd Company Name: Address: Report #: Phone: Received: **Priority:** Due: Jun 23, 2021 10:19 AM Jun 30, 2021 Stephen Maxwell 5 Day Contact Name: Eurofins Analytical Services Manager: Andrew Black Sample Detail × × × × × × × × × × × × Melbourne Laboratory - NATA Site # 1254 Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217 Mayfield Laboratory - NATA Site # 25079 **External Laboratory** Sample ID å Perth Laboratory - NATA Site # 23736 × Aluminium % Clay Cobalt Barium Cation Exchange Capacity pH (1:5 Aqueous extract at 25°C as rec.) Moisture Set Metals M8 Selenium Manganese Iron Molvbdenum ADDITIONAL - CAPTAINS FLAT LEAD MANAGEMENT PLAN Order No.: **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 × × × × × × × × × × × × × × × × × S21-Jn50363 S21-Jn50364 Jun 03, 2021 Jun 03, 2021 Jun 03, 2021 QA17 QA18 QA21 × × × × × × × × × × × > \times \times × S21-Jn50356 S21-Jn50357 S21-Jn50358 S21-Jn50359 S21-Jn50360 S21-Jn50361 S21-Jn50362 Soil Soil Soil Soil Soil Soil Soil Soil Soil > Jun 03, 2021 > > QA08 QA07 QA11 QA13 15 9 Jun 03, 2027 QA01 QA02 LAB ID Matrix Sampling Time Sample Date × × × × Australia 6 Monterey Road U Dandenong South VIC 3175 16 Phone : +61 3 8564 5000 L: NATA # 1261 P Site # 1254 N Melbourne ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +617 3902 4600 NATA # 1261 Site # 20794 Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** 318001193 805698 Order No.: Report #: Phone: ADDITIONAL - CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Box 60 Wickham 2293 Phone: +61'2 4968 8448 NATA # 1261 Site # 25079 Received: Due: Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Jun 23, 2021 10:19 AM Jun 30, 2021 5 Day Contact Name: Priority: Stephen Maxwell **Eurofins Analytical Services Manager: Andrew Black** | Cation Exchange Capacity | × | × | | | | | | | × | | | × | × | × | | | | |--|----------------------------------|----------------------------------|-----------------------------------|------------------------------------|-----------------------------------|----------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | Moisture Set | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | Metals M8 | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | Titanium | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | Selenium | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | pH (1:5 Aqueous extract at 25°C as rec.) | | × | | | | | | | × | | | × | × | × | | | | | Molybdenum | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | Manganese | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | Iron | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | Cobalt | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | Barium | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | Aluminium | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | % Clay | | | × | | | | | | × | | | × | × | × | | | | | | | | | | | | S21-Jn50365 | S21-Jn50366 | S21-Jn50367 | S21-Jn50368 | S21-Jn50369 | S21-Jn50370 | S21-Jn50371 | S21-Jn50372 | S21-Jn50373 | S21-Jn50374 | S21-Jn50375 | | _ | | | | | | | Soil | Sample Detail | te # 1254 | 18217 | # 20794 | 3736 | # 25079 | | | | | | | | | | | | | | U | ory - NATA Si | - NATA Site # | / - NATA Site | IATA Site # 2 | - NATA Site | | Jun 03, 2021 | | Melbourne Laboratory - NATA Site | Sydney Laboratory - NATA Site #1 | Brisbane Laboratory - NATA Site # | Perth Laboratory - NATA Site # 237 | Mayfield Laboratory - NATA Site # | External Laboratory | QA24 | QA25 | QA26 | QA30 | QA33 | QA40 | QA43 | QA44 | QA101 | QA102 | QA103 | | | Melbo | Sydn | Brisb | Perth | Mayfi | Exter | 10 | 7 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | # Australia **Environment Testing** 6 Monterey Road Ul Dandenong South VIC 3175 16 Phone : +613 8564 5000 Ls NATA # 1261 Pl Site # 1254 N Melbourne ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 Sydney Unit F3, Building F 16 Mars Road
Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +617 3902 4600 NATA # 1261 Site # 20794 Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Box 60 Wickham 2293 Phone: +61'2 4968 8448 NATA # 1261 Site # 25079 **New Zealand** Report #: Phone: ADDITIONAL - CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: Received: Priority: Due: Jun 23, 2021 10:19 AM Jun 30, 2021 5 Day Stephen Maxwell Contact Name: Eurofins Analytical Services Manager: Andrew Black | Cation Exchange Capacity | × | × | | | | | × | × | × | × | | | | | | |--|------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|---|----------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------------|---------------------| | Moisture Set | | × | | | | | × | × | × | × | × | × | × | × | × | | Metals M8 | | × | | | | | × | × | × | × | × | × | × | × | × | | Titanium | | × | | | | | × | × | × | × | × | × | × | × | × | | Selenium | | × | | | | | × | × | × | × | × | × | × | × | × | | pH (1:5 Aqueous extract at 25°C as rec.) | | × | | | | | × | × | × | × | | | | | | | Molybdenum | | × | | | | | × | X | X | X | X | X | X | × | × | | Manganese | | × | | | | | × | × | × | × | × | × | × | × | × | | Iron | | × | | | | | × | × | × | × | × | × | × | × | × | | Cobalt | | × | | | | | × | × | × | × | × | × | × | × | × | | Barium | | × | | | | | × | × | × | × | × | × | × | × | × | | Aluminium | | × | | | | | × | × | × | × | × | × | × | × | × | | % Clay | | | × | | | | × | × | × | × | | | | | | | | | | | | | | S21-Jn50377 | S21-Jn50378 | S21-Jn50379 | S21-Jn50380 | S21-Jn50381 | S21-Jn50382 | S21-Jn50383 | S21-Jn50384 | S21-Jn50385 | | = | | | | | | | Soil | Sample Detail | 9 # 1254 | 18217 | # 20794 | 736 | 25079 | | | | | | | | | | | | ν̈́ | ory - NATA Site | - NATA Site # | y - NATA Site | JATA Site # 23 | - NATA Site # | | Jun 03, 2021 | | Melbourne Laboratory - NATA Site # | Sydney Laboratory - NATA Site # 18217 | Brisbane Laboratory - NATA Site # 20 | Perth Laboratory - NATA Site # 23736 | Mayfield Laboratory - NATA Site # 25079 | External Laboratory | QA109 | QA110 | QA113 | QA114 | GW4_0.2 | GW7_0.2 | GW8_0.2 | SAQP11-
BH01_0.0 | SAQP11-
BH03_0.0 | | | Melb | Sydn | Brisk | Perth | Mayf | Exter | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 6 Monterey Road U Dandenong South VIC 3175 16 Phone : +61 3 8564 5000 L: NATA # 1261 P Site # 1254 N Melbourne Australia Sydney Unit F3, Building F 11 5 16 Mars Road M Lane Cove West NSW 2066 P Phone : +612 9900 8400 N NATA # 1261 Site # 18217 Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +617 3902 4600 NATA # 1261 Site # 20794 Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Box 60 Wickham 2293 Phone: +61'2 4968 8448 NATA # 1261 Site # 25079 **New Zealand** 318001193 Order No.: Fax: ADDITIONAL - CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: Report #: Phone: Contact Name: Received: Priority: Due: Jun 23, 2021 10:19 AM Jun 30, 2021 5 Day Stephen Maxwell **Eurofins Analytical Services Manager: Andrew Black** | Cation Exchange Capacity | × | × | | | |--|---|----|---|--------------------------------------| | Moisture Set | | × | | | | Metals M8 | | × | | | | Titanium | | × | | | | Selenium | | X | | | | pH (1:5 Aqueous extract at 25°C as rec.) | | X | | | | Molybdenum | | × | | | | Manganese | | X | | | | Iron | | × | | | | Cobalt | | × | | | | Barium | | × | | | | Aluminium | | × | | | | % Clay | | | × | | | Sample Detail | Melbourne Laboratory - NATA Site # 1254 | #= | Brisbane Laboratory - NATA Site # 20794 | Perth Laboratory - NATA Site # 23736 | | Vernal Laboratory - NATA Site # 25079 ternal Laboratory Jetnal Laboratory Sex Man Laboratory SAQP11-
BH10 Jun 03, 2021 Soil S21-Jn50386 X | | | | | | | | \vdash | | |--|-----------------|-----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | field Laboratory - NATA Site #26079 rad Laboratory - NATA Site #26079 rad Laboratory - NATA Site #26079 Sale Laboratory - Natar Laboratory - | | | × | × | × | × | × | | × | | field Laboratory - NATA Site # 25079 rad Laboratory rad Laboratory Ann 03, 2021 Soil S21-Jn50386 X | | | | × | × | × | × | - | × | | field Laboratory - NATA Site # 25079 rata Laboratory rata Laboratory Soil S21-Jn50386 X <th></th> <th></th> <td>×</td> <td>×</td> <td>×</td> <td>×</td> <td>×</td> <td>×</td> <td>X</td> | | | × | × | × | × | × | × | X | | field Laboratory - NATA Site # 25079 rata Laboratory rata Laboratory Soil S21-Jn50386 X <th></th> <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | | | | | | | | | | | field Laboratory - NATA Site # 25079 rata Laboratory rata Laboratory Soil S21-Jn50386 X <th></th> <th></th> <td>×</td> <td>X</td> <td>×</td> <td>×</td> <td>X</td> <td></td> <td>×</td> | | | × | X | × | × | X | | × | | field Laboratory - NATA Site # 25079 rnal Laboratory RAQP1-
BH00_0.0 Jun 03, 2021 Soil S21-Jn50386 X X X SAQP9-
BH03_0.0 Jun 03, 2021 Soil S21-Jn50389 X X X SAQP9-
BH04_0.25 Jun 03, 2021 Soil S21-Jn50389 X X X SAQP10-
BH02_0.25 Jun 03, 2021 Soil S21-Jn50389 X X X SAQP10-
BH02_0.25 Jun 03, 2021 Soil S21-Jn50390 X X X SH02_0.26 Jun 03, 2021 Water S21-Jn50391 X X X R1 Jun 03, 2021 Water S21-Jn50391 X X X | | | × | × | × | × | × | × | × | | field Laboratory - NATA Site # 25079 rnal Laboratory rnal Laboratory Soil S21-Jn50386 X X SAQP9-
BH00 Jun 03, 2021 Soil S21-Jn50387 X X SAQP9-
BH03 Jun 03, 2021 Soil S21-Jn50388 X X SAQP10-
BH04 Jun 03, 2021 Soil S21-Jn50389 X X SAQP10-
BH02 Jun 03, 2021 Soil S21-Jn50390 X X SAQP13-
BH02 Jun 03, 2021 Water S21-Jn50391 X X R1 Jun 03, 2021 Water S21-Jn50391 X X | | | × | × | × | X | X | | × | | field Laboratory - NATA Site # 25079 rnal Laboratory rnal Laboratory Soil S21-Jn50386 X X SAQP9-
BH00 Jun 03, 2021 Soil S21-Jn50387 X X SAQP9-
BH03 Jun 03, 2021 Soil
S21-Jn50388 X X SAQP10-
BH04 Jun 03, 2021 Soil S21-Jn50389 X X SAQP10-
BH02 Jun 03, 2021 Soil S21-Jn50390 X X SAQP13-
BH02 Jun 03, 2021 Water S21-Jn50391 X X R1 Jun 03, 2021 Water S21-Jn50391 X X | | | X | X | X | × | X | X | X | | field Laboratory - NATA Site # 25079 rnal Laboratory rnal Laboratory Soil S21-Jn50386 SAQP1-
BH10 Jun 03, 2021 Soil S21-Jn50387 SAQP9-
BH03 Jun 03, 2021 Soil S21-Jn50388 SAQP10-
BH04 Jun 03, 2021 Soil S21-Jn50389 SAQP10-
BH02 Jun 03, 2021 Soil S21-Jn50389 SAQP13-
BH02 Jun 03, 2021 Soil S21-Jn50390 R1 Jun 03, 2021 Water S21-Jn50391 R1 Jun 03, 2021 Water S21-Jn50391 | | | × | × | × | × | × | × | × | | field Laboratory - NATA Site # 25079 rnal Laboratory Soil SAQP11-
BH10_0.0 Jun 03, 2021 Soil SAQP9-
BH03_0.0 Jun 03, 2021 Soil SAQP10-
BH04_0.25 Jun 03, 2021 Soil SAQP10-
BH02_0.25 Jun 03, 2021 Soil SAQP13-
BH02_0.05 Jun 03, 2021 Soil R1 Jun 03, 2021 Water R1 Jun 03, 2021 Water | | | X | X | X | × | X | × | X | | field Laboratory - NATA Site # 25079 rnal Laboratory Soil SAQP11-
BH10_0.0 Jun 03, 2021 Soil SAQP9-
BH03_0.0 Jun 03, 2021 Soil SAQP10-
BH04_0.25 Jun 03, 2021 Soil SAQP10-
BH02_0.25 Jun 03, 2021 Soil SAQP13-
BH02_0.05 Jun 03, 2021 Soil R1 Jun 03, 2021 Water R1 Jun 03, 2021 Water | | | | | | | | | | | Field Laboratory - NATA Site # 25079 rnal Laboratory SAQP11- BH10 0.0 SAQP9- BH03 0.0 SAQP9- BH04 0.25 SAQP10- BH04 0.25 SAQP10- BH04 0.25 SAQP10- BH02 0.25 SAQP13- BH03 0.2 | | | S21-Jn50386 | S21-Jn50387 | S21-Jn50388 | S21-Jn50389 | S21-Jn50390 | S21-Jn50391 | S21-Jn50392 | | Mayfield Laboratory - NATA Site # 25079 External Laboratory 30 SAQP1-
BH10 Jun 03, 2021 31 SAQP9-
BH03 Jun 03, 2021 32 SAQP9-
BH04 Jun 03, 2021 33 SAQP10-
BH04 Jun 03, 2021 34 SAQP13-
BH02 Jun 03, 2021 35 SAQP13-
BH02 Jun 03, 2021 36 R1 Jun 03, 2021 | | | Soil | Soil | Soil | Soil | Soil | Water | Water | | Mayfield Laboratory - NATA Site # External Laboratory 30 SAQP11-
BH10_0.0 Jun 03, 2021 31 SAQP9-
BH03_0.0 Jun 03, 2021 32 SAQP9-
BH04_0.25 Jun 03, 2021 33 SAQP10-
BH02_0.25 Jun 03, 2021 34 SAQP13-
BH02_0.05 Jun 03, 2021 35 RAQP13-
BH02_0.0 Jun 03, 2021 36 R1 Jun 03, 2021 | 25079 | | | | | | | | | | Mayfield Laboratory External Laboratory 30 SAQP11- 31 SAQP9- 32 SAQP9- 33 SAQP9- 34 SAQP10- 33 SAQP10- 34 SAQP13- 35 SAQP13- 36 R1 36 R1 | - NATA Site # | | Jun 03, 2021 | 33 33 34 35 35 35 35 35 35 35 35 35 35 35 | ield Laboratory | rnal Laboratory | | | | | | 1 | R2 | | | Mayf | Exte | 30 | | | | | 35 | 36 | × × × × × ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 Australia 6 Monterey Road Ul Dandenong South VIC 3175 16 Phone : +613 8564 5000 Ls NATA # 1261 Pl Site # 1254 N Melbourne Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Sydney Unit F3, Building F 16 Mars Road Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +617 3902 4600 NATA # 1261 Site # 20794 318001193 805698 Order No.: Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Box 60 Wickham 2293 Phone: +61'2 4968 8448 NATA # 1261 Site # 25079 **New Zealand** Report #: Phone: Fax: ADDITIONAL - CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: Received: Priority: Due: Jun 23, 2021 10:19 AM Jun 30, 2021 5 Day Contact Name: Stephen Maxwell **Eurofins Analytical Services Manager: Andrew Black** | Cation Exchange Capacity | × | × | | | | | | 10 | |--|----------------------------------|---------------------------------------|---|--------------------------------------|------------------------------------|---------------------|---------------------|-------------| | Moisture Set | | × | | | | | | 34 | | Metals M8 | | × | | | | | × | 37 | | Titanium | | × | | | | | × | 37 | | Selenium | | × | | | | | × | 37 | | pH (1:5 Aqueous extract at 25°C as rec.) | | × | | | | | | 10 | | Molybdenum | | × | | | | | × | 37 | | Manganese | | × | | | | | × | 37 | | Iron | | × | | | | | × | 37 | | Cobalt | | × | | | | | × | 37 | | Barium | | × | | | | | × | 37 | | Aluminium | | × | | | | | × | 37 | | % Clay | | | X | | | | | 10 | | Sample Detail | e # 1254 | 18217 | # 20794 | 1736 | # 25079 | | Water S21-Jn50393 | | | S S | Melbourne Laboratory - NATA Site | Sydney Laboratory - NATA Site # 18217 | Brisbane Laboratory - NATA Site # 20794 | Perth Laboratory - NATA Site # 23736 | Mayfield Laboratory - NATA Site #2 | External Laboratory | 37 R3 Jun 03, 2021 | Test Counts | ### **Internal Quality Control Review and Glossary** #### General - Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request. - 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated. - 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated. - 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences. - 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds - 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise. - 7. Samples were analysed on an 'as received' basis. - 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results. - 9. This report replaces any interim results previously issued. ### **Holding Times** Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001). For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control. For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD #### Units mg/kg: milligrams per kilogram mg/L: micrograms per litre ug/L: micrograms per litre ppm: Parts per million ppb: Parts per billion %: Percentage org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres #### **Terms** Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis. LOR Limit of Reporting SPIKE Addition of the analyte to the sample and reported as percentage recovery. RPD Relative Percent Difference between two Duplicate pieces of analysis. LCS Laboratory Control Sample - reported as percent recovery. CRM Certified Reference Material - reported as percent recovery. Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water. Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery. **Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show comparison. USEPA United States Environmental Protection Agency APHA American Public Health Association TCLP Toxicity Characteristic Leaching Procedure COC Chain of Custody SRA Sample Receipt Advice QSM US Department of Defense Quality Systems Manual Version 5.3 CP Client Parent - QC was performed on samples pertaining to this report NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within. TEQ Toxic Equivalency Quotient ### QC - Acceptance Criteria RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable: Results <10 times the LOR : No Limit Results between 10-20 times the LOR: RPD must lie between 0-50% Results >20 times the LOR : RPD must lie between 0-30% Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected. WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA ### **QC Data General Comments** Date Reported: Jul 01, 2021 - 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided. - 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples. - 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS. - 4. Organochlorine Pesticide analysis where reporting
Spike data, Toxaphene is not added to the Spike. - 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report. - 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt. - 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte. - 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS. - 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample. 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data. Eurofins Environment Testing Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 Page 13 of 18 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Report Number: 805698-S ### **Quality Control Results** | Test | | | Units | Result 1 | Acceptance
Limits | Pass
Limits | Qualifying
Code | |-------------------------------------|-----------------|--------------|-------|----------|----------------------|----------------|--------------------| | Method Blank | | | | | | | | | Heavy Metals | | | | | | | | | Aluminium | | | mg/kg | < 20 | 20 | Pass | | | Arsenic | | | mg/kg | < 2 | 2 | Pass | | | Barium | | | mg/kg | < 10 | 10 | Pass | | | Cadmium | | | mg/kg | < 0.4 | 0.4 | Pass | | | Chromium | | | mg/kg | < 5 | 5 | Pass | | | Cobalt | | | mg/kg | < 5 | 5 | Pass | | | Copper | | | mg/kg | < 5 | 5 | Pass | | | Lead | | | mg/kg | < 5 | 5 | Pass | | | Manganese | | | mg/kg | < 5 | 5 | Pass | | | Mercury | | | mg/kg | < 0.1 | 0.1 | Pass | | | Molybdenum | | | mg/kg | < 5 | 5 | Pass | | | Nickel | | | mg/kg | < 5 | 5 | Pass | | | Selenium | | | mg/kg | < 2 | 2 | Pass | | | Titanium | | | mg/kg | < 10 | 10 | Pass | | | Zinc | | | mg/kg | < 5 | 5 | Pass | | | Method Blank | | | 0 0 | - | | | | | Conductivity (1:5 aqueous extract a | t 25°C as rec.) | | uS/cm | < 10 | 10 | Pass | | | LCS - % Recovery | , | | | _ | | | | | Heavy Metals | | | | | | | | | Aluminium | | | % | 87 | 80-120 | Pass | | | Arsenic | | | % | 97 | 80-120 | Pass | | | Barium | | | % | 95 | 80-120 | Pass | | | Cadmium | | | % | 98 | 80-120 | Pass | | | Chromium | | | % | 98 | 80-120 | Pass | | | Cobalt | | | % | 98 | 80-120 | Pass | | | Copper | | | % | 97 | 80-120 | Pass | | | Iron | | | % | 85 | 80-120 | Pass | | | Lead | | | % | 95 | 80-120 | Pass | | | Manganese | | | % | 96 | 80-120 | Pass | | | Mercury | | | % | 106 | 80-120 | Pass | | | | | | % | 114 | 80-120 | Pass | | | Molybdenum
Nickel | | | % | 100 | 80-120 | Pass | | | | | | % | 104 | 80-120 | Pass | | | Selenium | | | | | | | | | Titanium | | | % | 95 | 80-120 | Pass | | | Zinc | | | % | 91 | 80-120 | Pass | | | LCS - % Recovery | 4.05°C \ | | 0/ | 00 | 70.400 | Dana | | | Conductivity (1:5 aqueous extract a | t 25°C as rec.) | 0.4 | % | 90 | 70-130 | Pass | 0 | | Test | Lab Sample ID | QA
Source | Units | Result 1 | Acceptance
Limits | Pass
Limits | Qualifying
Code | | Spike - % Recovery | | | | | | | | | Heavy Metals | | | | Result 1 | | | | | Arsenic | S21-Jn50356 | CP | % | 109 | 75-125 | Pass | | | Barium | N21-Jn48314 | NCP | % | 117 | 75-125 | Pass | | | Cadmium | S21-Jn50356 | CP | % | 97 | 75-125 | Pass | | | Chromium | S21-Jn50356 | CP | % | 92 | 75-125 | Pass | | | Cobalt | S21-Jn50356 | CP | % | 91 | 75-125 | Pass | | | Copper | N21-Jn48314 | NCP | % | 102 | 75-125 | Pass | | | Lead | N21-Jn48314 | NCP | % | 100 | 75-125 | Pass | | | Mercury | S21-Jn50356 | CP | % | 87 | 75-125 | Pass | | | | 1 | | | |
 | | i | | Test | Lab Sample ID | QA
Source | Units | Result 1 | | | Acceptance
Limits | Pass
Limits | Qualifying
Code | |--|---|--|---|---|---|---|--|---|--------------------| | Nickel | S21-Jn50356 | CP | % | 90 | | | 75-125 | Pass | | | Selenium | S21-Jn50356 | СР | % | 104 | | | 75-125 | Pass | | | Zinc | N21-Jn48314 | NCP | % | 82 | | | 75-125 | Pass | | | Spike - % Recovery | <u> </u> | | | | | | • | | | | Heavy Metals | | | | Result 1 | | | | | | | Cadmium | S21-Jn50387 | СР | % | 104 | | | 75-125 | Pass | | | Chromium | S21-Jn50387 | СР | % | 93 | | | 75-125 | Pass | | | Cobalt | S21-Jn50387 | СР | % | 98 | | | 75-125 | Pass | | | Molybdenum | S21-Jn50387 | CP | % | 101 | | | 75-125 | Pass | | | Nickel | S21-Jn50387 | CP | % | 95 | | | 75-125 | Pass | | | Selenium | S21-Jn50387 | CP | % | 91 | | | 75-125 | Pass | | | Spike - % Recovery | 021 01100001 | <u> </u> | ,,, | | | | 10 120 | 1 400 | | | Heavy Metals | | | | Result 1 | | | | | | | Arsenic | S21-Jn50389 | СР | % | 89 | | | 75-125 | Pass | | | Cadmium | S21-Jn50389 | CP | % | 102 | | | 75-125 | Pass | | | Chromium | S21-J1150389 | CP | % | 102 | | | 75-125
75-125 | Pass | | | Cobalt | S21-J1150389 | CP | % | 103 | | | 75-125
75-125 | Pass | | | | S21-Jn50389
S21-Jn50389 | CP | % | 97 | | | 75-125
75-125 | Pass | | | Manganese
Mercurv | S21-Jn50389
S21-Jn50389 | CP | % | 101 | | | 75-125
75-125 | Pass | | | , | | | | | | | | | | | Molybdenum | S21-Jn50389 | CP | % | 110 | | | 75-125 | Pass | | | Nickel | S21-Jn50389 | CP | % | 100 | | | 75-125 | Pass | | | Selenium | S21-Jn50389 | CP | % | 98 | | | 75-125 | Pass | | | Titanium | S21-Jn50389 | CP | % | 121 | | | 75-125 | Pass | 0 116 1 | | Test | Lab Sample ID | QA
Source | Units | Result 1 | | | Acceptance
Limits | Pass
Limits | Qualifying
Code | | Duplicate | | | | | | | | | | | | | | | Result 1 | Result 2 | RPD | | | | | % Moisture | S21-Jn50358 | CP | % | 6.3 | 5.3 | 18 | 30% | Pass | | | Duplicate | | | | | | | | | | | | | | | Result 1 | Result 2 | RPD | | | | | Conductivity (1:5 aqueous extract at 25°C as rec.) | S21-Jn46577 | NCP | uS/cm | 170 | 190 | 7.0 | 30% | Pass | | | pH (1:5 Aqueous extract at 25°C as rec.) | S21-Jn46577 | NCP | pH Units | 7.0 | 7.0 | <1 | 30% | Pass | | | Duplicate | | | | 7.0 | | | | 1 400 | | | | | | | 7.0 | | | | 1 400 | | | | | | | Result 1 | Result 2 | RPD | | 1 400 | | | % Moisture | S21-Jn50368 | СР | % | | Result 2 | RPD
14 | 30% | Pass | | | % Moisture Duplicate | S21-Jn50368 | СР | % | Result 1 | | | 30% | | | | | S21-Jn50368 | СР | % | Result 1 | | | 30% | | | | Duplicate | S21-Jn50368
S21-Jn50375 | CP CP | %
mg/kg | Result 1 | 12 | 14 | 30% | | | | Duplicate
Heavy Metals | | | | Result 1 14 Result 1 | 12
Result 2 | 14
RPD | | Pass | | | Duplicate
Heavy Metals
Aluminium | S21-Jn50375 | СР | mg/kg | Result 1 14 Result 1 12000 | 12
Result 2
12000 | 14
RPD
2.0 | 30% | Pass Pass | | | Duplicate Heavy Metals Aluminium Arsenic | S21-Jn50375
S21-Jn50375 | CP
CP | mg/kg
mg/kg | Result 1 14 Result 1 12000 67 | 12
Result 2
12000
67 | 14
RPD
2.0
1.0 | 30% | Pass Pass Pass | | | Duplicate Heavy Metals Aluminium Arsenic Barium | S21-Jn50375
S21-Jn50375
S21-Jn50375 | CP
CP | mg/kg
mg/kg
mg/kg | Result 1 14 Result 1 12000 67 54 | 12
Result 2
12000
67
48 | 14
RPD
2.0
1.0 | 30%
30%
30% | Pass Pass Pass Pass | | | Duplicate Heavy Metals Aluminium Arsenic Barium Cadmium | S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375 | CP
CP
CP | mg/kg
mg/kg
mg/kg
mg/kg
mg/kg | Result 1 14 Result 1 12000 67 54 0.7 | 12 Result 2 12000 67 48 0.8 | 14
RPD
2.0
1.0
12
16 | 30%
30%
30%
30% | Pass Pass Pass Pass Pass | | | Duplicate Heavy Metals Aluminium Arsenic Barium Cadmium Chromium | S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375 | CP
CP
CP
CP
CP | mg/kg
mg/kg
mg/kg
mg/kg
mg/kg | Result 1 14 Result 1 12000 67 54 0.7 37 | Result 2 12000 67 48 0.8 40 | 14
RPD
2.0
1.0
12
16
8.0 | 30%
30%
30%
30%
30% | Pass Pass Pass Pass Pass Pass Pass | | | Duplicate Heavy Metals Aluminium Arsenic Barium Cadmium Chromium Cobalt Copper | S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375 | CP
CP
CP
CP
CP
CP | mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg | Result 1 14 Result 1 12000 67 54 0.7 37 < 5 260 | 12 Result 2 12000 67 48 0.8 40 < 5 250 | 14 RPD 2.0 1.0 12 16 8.0 <1 2.0 | 30%
30%
30%
30%
30%
30%
30% | Pass Pass Pass Pass Pass Pass Pass Pass | | | Duplicate Heavy Metals Aluminium Arsenic Barium Cadmium Chromium Cobalt Copper | S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375 | CP
CP
CP
CP
CP
CP | mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg | Result 1 14 Result 1 12000 67 54 0.7 37 < 5 260 30000 | Result 2 12000 67 48 0.8 40 <5 250 32000 | 14 RPD 2.0 1.0 12 16 8.0 <1 2.0 6.0 | 30%
30%
30%
30%
30%
30%
30%
30% | Pass Pass Pass Pass Pass Pass Pass Pass | | | Duplicate Heavy Metals Aluminium Arsenic Barium Cadmium Chromium Cobalt
Copper Iron Lead | S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375 | CP
CP
CP
CP
CP
CP
CP
CP | mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg | Result 1 14 Result 1 12000 67 54 0.7 37 < 5 260 30000 12000 | Result 2 12000 67 48 0.8 40 < 5 250 32000 9900 | 14 RPD 2.0 1.0 12 16 8.0 <1 2.0 6.0 17 | 30%
30%
30%
30%
30%
30%
30%
30%
30% | Pass Pass Pass Pass Pass Pass Pass Pass | | | Duplicate Heavy Metals Aluminium Arsenic Barium Cadmium Chromium Cobalt Copper Iron Lead Manganese | S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375 | CP | mg/kg | Result 1 14 Result 1 12000 67 54 0.7 37 < 5 260 30000 12000 29 | Result 2 12000 67 48 0.8 40 <55 250 32000 9900 32 | 14 RPD 2.0 1.0 12 16 8.0 <1 2.0 6.0 17 9.0 | 30%
30%
30%
30%
30%
30%
30%
30%
30% | Pass Pass Pass Pass Pass Pass Pass Pass | | | Duplicate Heavy Metals Aluminium Arsenic Barium Cadmium Chromium Cobalt Copper Iron Lead Manganese Mercury | S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375 | CP C | mg/kg | Result 1 14 Result 1 12000 67 54 0.7 37 < 5 260 30000 12000 29 0.1 | Result 2 12000 67 48 0.8 40 < 5 250 32000 9900 32 0.2 | 14 RPD 2.0 1.0 12 16 8.0 <1 2.0 6.0 17 9.0 15 | 30%
30%
30%
30%
30%
30%
30%
30%
30%
30% | Pass Pass Pass Pass Pass Pass Pass Pass | | | Duplicate Heavy Metals Aluminium Arsenic Barium Cadmium Chromium Cobalt Copper Iron Lead Manganese Mercury Molybdenum | S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375 | CP C | mg/kg | Result 1 14 Result 1 12000 67 54 0.7 37 < 5 260 30000 12000 29 0.1 < 5 | Result 2 12000 67 48 0.8 40 <5 250 32000 9900 32 0.2 <5 | 14 RPD 2.0 1.0 12 16 8.0 <1 2.0 6.0 17 9.0 15 <1 | 30%
30%
30%
30%
30%
30%
30%
30%
30%
30% | Pass Pass Pass Pass Pass Pass Pass Pass | | | Duplicate Heavy Metals Aluminium Arsenic Barium Cadmium Chromium Cobalt Copper Iron Lead Manganese Mercury Molybdenum Nickel | S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375 | CP C | mg/kg | Result 1 14 Result 1 12000 67 54 0.7 37 < 5 260 30000 12000 29 0.1 < 5 5.1 | Result 2 12000 67 48 0.8 40 < 5 250 32000 9900 32 0.2 < 5 5.3 | 14 RPD 2.0 1.0 12 16 8.0 <1 2.0 6.0 17 9.0 15 <1 4.0 | 30%
30%
30%
30%
30%
30%
30%
30%
30%
30% | Pass Pass Pass Pass Pass Pass Pass Pass | | | Duplicate Heavy Metals Aluminium Arsenic Barium Cadmium Chromium Cobalt Copper Iron Lead Manganese Mercury Molybdenum | S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375
S21-Jn50375 | CP C | mg/kg | Result 1 14 Result 1 12000 67 54 0.7 37 < 5 260 30000 12000 29 0.1 < 5 | Result 2 12000 67 48 0.8 40 <5 250 32000 9900 32 0.2 <5 | 14 RPD 2.0 1.0 12 16 8.0 <1 2.0 6.0 17 9.0 15 <1 | 30%
30%
30%
30%
30%
30%
30%
30%
30%
30% | Pass Pass Pass Pass Pass Pass Pass Pass | | | Duplicate | | | | | | | | | | |--------------------------|----------------------------|----------|----------|------------------|-------------------|-----------|--------------|------|------------| | Cation Exchange Capacity | | | | Result 1 | Result 2 | RPD | | | | | Cation Exchange Capacity | S21-Jn50377 | СР | meg/100g | 12 | 13 | 9.0 | 30% | Pass | | | Duplicate | | <u> </u> | 1 | | | 0.0 | 0075 | | | | | | | | Result 1 | Result 2 | RPD | | | | | % Moisture | S21-Jn50379 | СР | % | 26 | 27 | 1.0 | 30% | Pass | | | Duplicate | 52.0.000.0 | <u> </u> | | | | | 0075 | | | | Heavy Metals | | | | Result 1 | Result 2 | RPD | | | | | Aluminium | S21-Jn50386 | СР | mg/kg | 7800 | 10000 | 27 | 30% | Pass | | | Arsenic | S21-Jn50386 | CP | mg/kg | 41 | 25 | 48 | 30% | Fail | Q02 | | Barium | S21-Jn50386 | CP | mg/kg | 340 | 240 | 34 | 30% | Fail | Q02 | | Cadmium | S21-Jn50386 | CP | mg/kg | 3.9 | 2.5 | 44 | 30% | Fail | Q15 | | Chromium | S21-Jn50386 | CP | mg/kg | 14 | 11 | 25 | 30% | Pass | <u> </u> | | Cobalt | S21-Jn50386 | CP | mg/kg | 11 | 8.5 | 22 | 30% | Pass | | | Copper | S21-Jn50386 | CP | mg/kg | 330 | 210 | 41 | 30% | Fail | Q02 | | Iron | S21-Jn50386 | CP | mg/kg | 15000 | 23000 | 41 | 30% | Fail | Q02 | | Lead | S21-Jn50386 | CP | mg/kg | 1200 | 790 | 41 | 30% | Fail | Q02 | | Manganese | S21-Jn50386 | CP | mg/kg | 650 | 540 | 18 | 30% | Pass | Q02 | | Mercury | S21-Jn50386 | CP | mg/kg | 0.2 | 0.1 | 51 | 30% | Fail | Q15 | | Molybdenum | S21-Jn50386 | CP | mg/kg | < 5 | < 5 | <u> </u> | 30% | Pass | હાડ | | Nickel | S21-Jn50386 | CP | mg/kg | 9.8 | 6.8 | 35 | 30% | Fail | Q15 | | Selenium | S21-Jn50386 | CP | | 4.2 | 2.8 | 41 | 30% | Fail | Q15
Q15 | | | S21-Jn50386 | CP | mg/kg | 130 | 110 | | 30% | Pass | <u>Q13</u> | | Titanium | | CP | mg/kg | | | 15 | <u> </u> | | | | Zinc | S21-Jn50386 | L CP | mg/kg | 1200 | 1300 | 11 | 30% | Pass | | | Duplicate Heavy Metals | | | | Dogult 1 | Decult 2 | DDD | | | | | Heavy Metals | C21 InF0207 | СР | mallea | Result 1 | Result 2 | RPD | 30% | Fail | | | Aluminium | S21-Jn50387
S21-Jn50387 | CP | mg/kg | 9000
170 | 12000 | 31 | 30% | Pass | Q02 | | Arsenic | | CP | mg/kg | | 220
160 | 26 | 30% | Pass | | | Barium | S21-Jn50387 | CP | mg/kg | 120
< 0.4 | < 0.4 | 28
<1 | 30% | Pass | | | Characteristics | S21-Jn50387 | CP | mg/kg | | | 21 | 30% | Pass | | | Chromium | S21-Jn50387 | CP | mg/kg | 9.0 | 11 | <u> </u> | 30% | Pass | | | Conner | S21-Jn50387
S21-Jn50387 | CP | mg/kg | < 5
410 | < 5
660 | 46 | 30% | Fail | | | Copper | S21-Jn50387 | CP | mg/kg | | 60000 | | 30% | Pass | Q02 | | Iron | S21-Jn50387 | CP | mg/kg | 51000 | | 16 | | Fail | | | Lead | | CP | mg/kg | 7300 | 12000 | 45 | 30%
30% | Fail | Q02 | | Manganese | S21-Jn50387 | | mg/kg | 94 | 140 | 38 | | + | Q02 | | Melyhdanum | S21-Jn50387 | CP | mg/kg | 2.1 | 3.3 | 42 | 30% | Fail | Q02 | | Molybdenum | S21-Jn50387 | CP | mg/kg | 5.8 | 7.7 | 29 | 30% | Pass | | | Nickel | S21-Jn50387 | CP
CP | mg/kg | < 5 | < 5 | <1 | 30% | Pass | | | Selenium
Titanium | S21-Jn50387 | | mg/kg | 8.3 | 11 | 25 | 30% | Pass | | | | S21-Jn50387 | CP
CP | mg/kg | 200 | 300 | 40
47 | 30% | Fail | Q02 | | Zinc | S21-Jn50387 | CP | mg/kg | 280 | 450 | 47 | 30% | Fail | Q02 | | Duplicate Heavy Metals | | | | Dogult 1 | Dogult 2 | DDD | | | | | Heavy Metals Aluminium | \$21 InF0200 | СР | ma/ka | Result 1
7900 | Result 2
10000 | RPD
23 | 30% | Pass | | | Arsenic | S21-Jn50388
S21-Jn50388 | CP | mg/kg | 90 | 130 | 34 | 30% | Fail | Q02 | | Barium | S21-Jn50388
S21-Jn50388 | CP | mg/kg | 440 | 630 | 35 | 30% | Fail | Q02
Q02 | | Cadmium | S21-Jn50388
S21-Jn50388 | CP | mg/kg | 0.8 | 0.6 | 25 | 30% | Pass | <u> </u> | | | | | mg/kg | | | | 1 | | | | Chromium | S21-Jn50388 | CP | mg/kg | 11 | 11 | 3.0 | 30% | Pass | | | Coppor | S21-Jn50388 | CP | mg/kg | < 5 | < 5 | <1 | 30% | Pass | | | Copper | S21-Jn50388 | CP | mg/kg | 390 | 510 | 26 | 30% | Pass | | | Iron | S21-Jn50388 | CP | mg/kg | 41000 | 53000 | 27 | 30% | Pass | | | Manganese | S21-Jn50388 | CP | mg/kg | 140 | 150 | 9.0 | 30% | Pass | | | Melyhdenum | S21-Jn50388 | CP | mg/kg | 0.6 | 1.3 | 83 | 30% | Fail | Q15 | | Molybdenum | S21-Jn50388 | CP | mg/kg | < 5 | 5.7 | 14 | 30% | Pass | | | Nickel | S21-Jn50388 | CP | mg/kg | < 5 | < 5 | <1 | 30% | Pass | | | Duplicate | | | | | | | | | | |--------------|-------------|----|-------|----------|----------|-----|-----|------|-----| | Heavy Metals | | | | Result 1 | Result 2 | RPD | | | | | Selenium | S21-Jn50388 | CP | mg/kg | 3.8 | 6.3 | 49 | 30% | Fail | Q15 | | Titanium | S21-Jn50388 | CP | mg/kg | 300 | 280 | 7.0 | 30% | Pass | | | Duplicate | | | | | | | | | | | | | | | Result 1 | Result 2 | RPD | | | | | % Moisture | S21-Jn50389 | CP | % | 7.6 | 6.2 | 21 | 30% | Pass | | Report Number: 805698-S #### Comments ### Sample Integrity Custody Seals Intact (if used) Attempt to Chill was evident Yes Sample correctly preserved No Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No ### **Qualifier Codes/Comments** Code Description Q02 The duplicate %RPD is outside the recommended acceptance criteria. Further analysis indicates sample heterogeneity as the cause Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report. ### Authorised by: John Nguyen Analytical Services Manager Charl Du Preez Senior Analyst-Inorganic (NSW) Emily Rosenberg Senior Analyst-Metal (VIC) John Nguyen Senior Analyst-Metal (NSW) Jonathon Angell Senior Analyst-Inorganic (QLD) Glenn Jackson General Manager Final Report – this report replaces any previously issued Report - Indicates Not Requested - * Indicates NATA accreditation does not cover the performance of this service Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$ Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This
document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received. Report Number: 805698-S Ramboll Environ Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060 NATA Accredited Accreditation Number 1261 Site Number 18217 Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates. Attention: Stephen Maxwell Report 805698-W Project name ADDITIONAL - CAPTAINS FLAT LEAD MANAGEMENT PLAN Project ID 318001193 Received Date Jun 23, 2021 | Client Sample ID | | | R1 | R2 | R3 | |---------------------|--------|------|--------------|--------------|--------------| | Sample Matrix | | | Water | Water | Water | | Eurofins Sample No. | | | S21-Jn50391 | S21-Jn50392 | S21-Jn50393 | | Date Sampled | | | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | | Test/Reference | LOR | Unit | | | | | Heavy Metals | | | | | | | Aluminium | 0.05 | mg/L | < 0.05 | < 0.05 | < 0.05 | | Arsenic | 0.001 | mg/L | < 0.001 | < 0.001 | < 0.001 | | Barium | 0.02 | mg/L | < 0.02 | < 0.02 | < 0.02 | | Cadmium | 0.0002 | mg/L | < 0.0002 | < 0.0002 | < 0.0002 | | Chromium | 0.001 | mg/L | < 0.001 | < 0.001 | < 0.001 | | Cobalt | 0.001 | mg/L | < 0.001 | < 0.001 | < 0.001 | | Copper | 0.001 | mg/L | < 0.001 | 0.004 | < 0.001 | | Iron | 0.05 | mg/L | < 0.05 | 0.33 | < 0.05 | | Lead | 0.001 | mg/L | 0.039 | 0.015 | < 0.001 | | Manganese | 0.005 | mg/L | < 0.005 | 0.005 | < 0.005 | | Mercury | 0.0001 | mg/L | < 0.0001 | < 0.0001 | < 0.0001 | | Molybdenum | 0.005 | mg/L | 0.007 | < 0.005 | < 0.005 | | Nickel | 0.001 | mg/L | < 0.001 | < 0.001 | < 0.001 | | Selenium | 0.001 | mg/L | < 0.001 | < 0.001 | < 0.001 | | Titanium | 0.005 | mg/L | < 0.005 | 0.006 | < 0.005 | | Zinc | 0.005 | mg/L | 0.008 | 0.020 | < 0.005 | ### Sample History Where samples are submitted/analysed over several days, the last date of extraction is reported. If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time. | Description | Testing Site | Extracted | Holding Time | |--|---------------------|--------------|---------------------| | Heavy Metals | Sydney | Jun 25, 2021 | 180 Days | | - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS | | | | | Metals M8 | Sydney | Jun 25, 2021 | 180 Days | eurofins 💸 Australia **Environment Testing** 6 Monterey Road Dandenong South VIC 3175 1 Phone: +61 3 8564 5000 L NATA # 1261 Melbourne Site # 1254 ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway North Sydney NSW 2060 318001193 Project Name: Project ID: Ramboll Australia Pty Ltd Company Name: Address: Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 1/21 Smallwood Place Murarrie QLD 4172 5 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 318001193 805698 Order No.: Report #: Phone: Perth 46-48 Banksia Road Welshool WA 6106 Phone: +618 9251 9600 NATA # 1261 Site # 23736 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Do Sox 60 Wickham 2293 Phone: +612 4968 8448 NATA # 1261 Site # 25079 Received: **Priority:** Due: Jun 23, 2021 10:19 AM Jun 30, 2021 Contact Name: 5 Day Stephen Maxwell Eurofins Analytical Services Manager: Andrew Black Cation Exchange Capacity pH (1:5 Aqueous extract at 25°C as rec.) Moisture Set Metals M8 Selenium Molvbdenum Manganese Iron Cobalt Barium % Clay ADDITIONAL - CAPTAINS FLAT LEAD MANAGEMENT PLAN Aluminium Sample Detail Melbourne Laboratory - NATA Site # 1254 × × × × × × × × × × × × × Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217 Mayfield Laboratory - NATA Site # 25079 Perth Laboratory - NATA Site # 23736 Matrix **External Laboratory** å Sample ID Sample Date Sampling Time QA01 QA02 Jun 03, 2021 Jun 03, 2027 × × × × × × × × > \times \times × S21-Jn50356 S21-Jn50357 S21-Jn50358 S21-Jn50359 S21-Jn50360 S21-Jn50361 S21-Jn50362 Soil Soil Soil Soil Soil LAB ID Jun 03, 2021 Jun 03, 2021 Jun 03, 2021 > QA08 QA07 QA11 15 9 QA17 QA18 QA21 QA13 Soil Soil Soil Soil Jun 03, 2021 Jun 03, 2021 Jun 03, 2021 Jun 03, 2021 Eurofins Environment Testing Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 Page 3 of 11 × × × × × × × × × × × × × × × × × S21-Jn50363 S21-Jn50364 × × × ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 Australia 6 Monterey Road U Dandenong South VIC 3175 16 Phone : +61 3 8564 5000 L: NATA # 1261 P Site # 1254 N Melbourne Sydney Unit F3, Building F 11 5 16 Mars Road M Lane Cove West NSW 2066 P Phone : +612 9900 8400 N NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +617 3902 4600 NATA # 1261 Site # 20794 Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** 318001193 805698 Order No.: Report #: Phone: Fax: ADDITIONAL - CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Box 60 Wickham 2293 Phone: +61'2 4968 8448 NATA # 1261 Site # 25079 Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Jun 23, 2021 10:19 AM Jun 30, 2021 Received: Priority: Due: 5 Day Contact Name: Stephen Maxwell **Eurofins Analytical Services Manager: Andrew Black** | Cation Exchange Capacity | × | × | | | | | | | × | | | × | × | × | | | | |--|---|------|---|--------------------------------------|---|----------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | Moisture Set | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | Metals M8 | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | Titanium | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | Selenium | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | pH (1:5 Aqueous extract at 25°C as rec.) | | × | | | | | | | × | | | × | X | × | | | | | Molybdenum | | × | | | | | × | X | X | X | X | X | X | X | X | × | X | | Manganese | | × | | | | | × | X | X | X | X | X | X | X | X | × | X | | Iron | | × | | | | | × | × | × | × | × | × | X | × | × | × | X | | Cobalt | | × | | | | | × | X | X | X | X | X | X | X | X | × | X | | Barium | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | Aluminium | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | % Clay | | | × | | | | | | × | | | × | × | × | | | | | | | | | | | | S21-Jn50365 | S21-Jn50366 | S21-Jn50367 | S21-Jn50368 | S21-Jn50369 | S21-Jn50370 | S21-Jn50371 | S21-Jn50372 | S21-Jn50373 | S21-Jn50374 | S21-Jn50375 | | Sample Detail | Melbourne Laboratory - NATA Site # 1254 | | Brisbane Laboratory - NATA Site # 20794 | Perth Laboratory - NATA Site # 23736 | Mayfield Laboratory - NATA Site # 25079 | | Soil | Jun 03, 2021 | | | | | | | External Laboratory | QA24 | QA25 | QA26 | QA30 | QA33 | QA40 | QA43 | QA44 | QA101 | QA102 | QA103 | | | Melbo | Sydn | Brisb | Perth | Mayfi | Exter | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 Australia 6 Monterey Road U Dandenong South VIC 3175 16 Phone : +61 3 8564 5000 L: NATA # 1261 P Site # 1254 N Melbourne Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +617 3902 4600 NATA # 1261 Site # 20794 Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Box 60 Wickham 2293 Phone: +61'2 4968 8448 NATA # 1261 Site # 25079 **New Zealand** 318001193 805698 Order No.: Report #: Phone: ADDITIONAL - CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: Received: Priority: Due: Jun 23, 2021 10:19 AM Jun 30, 2021 5 Day Contact Name: Stephen Maxwell Eurofins Analytical Services Manager: Andrew Black | Cation Exchange Capacity | × | × | | | | | × | × | × | × | | | | | | |--|------------------------------------|---------------------------------------|----------------|--------------------------------------|---|----------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------------|---------------------| | Moisture Set | | × | | | | | × | × | × | × | × | × | × | × | × | | Metals M8 | | × | |
| | | × | × | × | × | × | × | × | × | × | | Titanium | | × | | | | | × | × | × | × | × | × | × | × | × | | Selenium | | × | | | | | × | X | X | X | X | X | X | × | × | | pH (1:5 Aqueous extract at 25°C as rec.) | | × | | | | | × | × | × | × | | | | | | | Molybdenum | | × | | | | | × | × | × | × | × | × | × | × | × | | Manganese | | × | | | | | × | × | × | × | × | × | × | × | × | | Iron | | × | | | | | × | × | × | × | × | × | × | × | × | | Cobalt | | × | | | | | × | × | × | × | × | × | × | × | × | | Barium | | × | | | | | × | × | × | × | × | × | × | × | × | | Aluminium | | × | | | | | × | × | × | × | × | × | × | × | × | | % Clay | | | × | | | | × | × | × | × | | | | | | | | | | | | | | S21-Jn50377 | S21-Jn50378 | S21-Jn50379 | S21-Jn50380 | S21-Jn50381 | S21-Jn50382 | S21-Jn50383 | S21-Jn50384 | S21-Jn50385 | | etail | | | | | | | Soil | Sample Detail | e # 1254 | 18217 | # 20794 | 3736 | # 25079 | | | | | | | | | | | | 0) | ry - NATA Sit | NATA Site # | - NATA Site | IATA Site # 2: | - NATA Site | | Jun 03, 2021 | | Melbourne Laboratory - NATA Site # | Sydney Laboratory - NATA Site # 18217 | ane Laboratory | Perth Laboratory - NATA Site # 23736 | Mayfield Laboratory - NATA Site # 25079 | External Laboratory | QA109 | QA110 | QA113 | QA114 | GW4_0.2 | GW7_0.2 | GW8_0.2 | SAQP11-
BH01 0.0 | SAQP11-
BH03 0.0 | | | Melbo | Sydn | Brisb | Perth | Mayfi | Exter | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 6 Monterey Road Ul Dandenong South VIC 3175 16 Phone : +613 8564 5000 Ls NATA # 1261 Pl Site # 1254 N Melbourne Australia Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +617 3902 4600 NATA # 1261 Site # 20794 Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** Phone: Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Box 60 Wickham 2293 Phone: +61'2 4968 8448 NATA # 1261 Site # 25079 Received: Due: Jun 23, 2021 10:19 AM Jun 30, 2021 5 Day Contact Name: Priority: Stephen Maxwell **Eurofins Analytical Services Manager: Andrew Black** | Project Name: | ADDITIONAL - CAPTAINS FLAT LEAD MANAGEMENT PLAN | |---------------|---| | Project ID: | 318001193 | | | | | Cation Exchange Capacity | × | × | | | | | | | | | | | | |--|---|---------------------------------------|---|--------------------------------------|---|----------------------------|---------------------|--------------------|---------------------|----------------------|---------------------|--------------|--------------| | Moisture Set | | × | | | | | × | × | × | × | × | | | | Metals M8 | | × | | | | | × | × | × | × | × | × | × | | Titanium | | × | | | | | × | × | × | × | × | × | × | | Selenium | | X | | | | | × | × | × | × | × | × | × | | pH (1:5 Aqueous extract at 25°C as rec.) | | × | | | | | | | | | | | | | Molybdenum | | × | | | | | × | X | × | × | X | X | × | | Manganese | | × | | | | | × | × | × | × | × | × | × | | Iron | | × | | | | | × | × | × | × | × | × | × | | Cobalt | | × | | | | | × | × | × | × | × | × | × | | Barium | | × | | | | | × | × | × | × | × | × | × | | Aluminium | | × | | | | | × | × | × | × | × | × | × | | % Clay | | | × | | | | | | | | | | | | | | | | | | | S21-Jn50386 | S21-Jn50387 | S21-Jn50388 | S21-Jn50389 | S21-Jn50390 | S21-Jn50391 | S21-Jn50392 | | | | | | | | | Soil | Soil | Soil | Soil | Soil | Water | Water | | Sample Detail | # 1254 | 8217 | 20794 | 736 | 25079 | | | | | | | | | | ชั | ory - NATA Site | - NATA Site # | / - NATA Site # | IATA Site # 23 | - NATA Site # | | Jun 03, 2021 | | Melbourne Laboratory - NATA Site # 1254 | Sydney Laboratory - NATA Site # 18217 | Brisbane Laboratory - NATA Site # 20794 | Perth Laboratory - NATA Site # 23736 | Mayfield Laboratory - NATA Site # 25079 | External Laboratory | SAQP11-
BH10_0.0 | SAQP9-
BH03_0.0 | SAQP9-
BH04_0.25 | SAQP10-
BH02_0.25 | SAQP13-
BH02_0.0 | R1 | R2 | | | lelbo | ydn | risb | erth | layfi | xter | 30 | 31 | 32 | 33 | 34 | 35 | 36 | Australia 6 Monterey Road Ul Dandenong South VIC 3175 16 Phone : +613 8564 5000 Ls NATA # 1261 Pl Site # 1254 N Melbourne ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +617 3902 4600 NATA # 1261 Site # 20794 Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Box 60 Wickham 2293 Phone: +61'2 4968 8448 NATA # 1261 Site # 25079 Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 **New Zealand** 318001193 805698 Order No.: Report #: Phone: Fax: Contact Name: Received: Priority: Due: Jun 23, 2021 10:19 AM Jun 30, 2021 5 Day Stephen Maxwell 318001193 Project Name: Project ID: ADDITIONAL - CAPTAINS FLAT LEAD MANAGEMENT PLAN Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 **Eurofins Analytical Services Manager: Andrew Black** V V V V Ir C B | Sample Detail | | % Clay | Aluminium | Barium | Cobalt | ron | Manganese | Molybdenum | pH (1:5 Aqueous extract at 25°C as rec.) | Titanium
Selenium | Metals M8 | Moisture Set | Cation Exchange Capacity | | |---|-------------|--------|-----------|--------|--------|-----|-----------|------------|--|----------------------|-----------|--------------|--------------------------|--| | Melbourne Laboratory - NATA Site # 1254 | | | | | | | | | | | | | × | | | Sydney Laboratory - NATA Site # 18217 | | | × | × | × | × | × | × | × | × | × | × | × | | | Brisbane Laboratory - NATA Site # 20794 | | × | | | | | | | | | | | | | | Perth Laboratory - NATA Site # 23736 | | | | | | | | | | | | | | | | Mayfield Laboratory - NATA Site # 25079 | | | | | | | | | | | | | | | | External Laboratory | | | | | | | | | | | | | | | | 37 R3 Jun 03, 2021 Water | S21-Jn50393 | | × | × | × | × | × | × | | × | × | | | | | Test Counts | | 10 | 37 | 37 | 37 | 37 | 37 | 37 | 10 | 37 37 | 7 37 | 34 | 10 | | | | | | | | | | | | | | | | | | ## **Internal Quality Control Review and Glossary** ## General - 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request. - 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated. - 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated. - 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences. - 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds. - 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise. - 7. Samples were analysed on an 'as received' basis. - 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results. - 9. This report replaces any interim results previously issued. # **Holding Times** Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001). For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control. For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD ### Units mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres ## **Terms** Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis. LOR Limit of Reporting SPIKE Addition of the analyte to the sample and reported as percentage recovery. RPD Relative Percent Difference between two Duplicate pieces of analysis. LCS Laboratory Control Sample - reported as percent recovery. CRM Certified Reference Material - reported as percent recovery. Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water. Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery. **Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show
comparison. USEPA United States Environmental Protection Agency APHA American Public Health Association TCLP Toxicity Characteristic Leaching Procedure COC Chain of Custody SRA Sample Receipt Advice QSM US Department of Defense Quality Systems Manual Version 5.3 CP Client Parent - QC was performed on samples pertaining to this report NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within. TEQ Toxic Equivalency Quotient # QC - Acceptance Criteria RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable: Results <10 times the LOR : No Limit Results between 10-20 times the LOR: RPD must lie between 0-50% Results >20 times the LOR : RPD must lie between 0-30% Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected. WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA # **QC Data General Comments** - 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided. - 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples. - 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS. - 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike. - 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report. - 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt. - 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte. - 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS. - 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample. - 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data. # **Quality Control Results** | | Test | | Units | Result 1 | | Acceptance
Limits | Pass
Limits | Qualifying
Code | |--------------------|---------------|--------------|----------|----------|---|----------------------|----------------|--------------------| | Method Blank | | | | | | | | | | Heavy Metals | | | | | | | | | | Aluminium | | | mg/L | < 0.05 | | 0.05 | Pass | | | Arsenic | | | mg/L | < 0.001 | | 0.001 | Pass | | | Barium | | | mg/L | < 0.02 | | 0.02 | Pass | | | Cadmium | | | mg/L | < 0.0002 | | 0.0002 | Pass | | | Chromium | | | mg/L | < 0.001 | | 0.001 | Pass | | | Cobalt | | | mg/L | < 0.001 | | 0.001 | Pass | | | Copper | | | mg/L | < 0.001 | | 0.001 | Pass | | | Iron | | | mg/L | < 0.05 | | 0.05 | Pass | | | Lead | | | mg/L | < 0.001 | | 0.001 | Pass | | | Manganese | | | mg/L | < 0.005 | | 0.005 | Pass | | | Mercury | | | mg/L | < 0.0001 | | 0.0001 | Pass | | | Molybdenum | | | mg/L | < 0.005 | | 0.005 | Pass | | | Nickel | | | mg/L | < 0.001 | | 0.001 | Pass | | | Selenium | | | mg/L | < 0.001 | | 0.001 | Pass | | | Titanium | | | mg/L | < 0.005 | | 0.005 | Pass | | | Zinc | | | mg/L | < 0.005 | | 0.005 | Pass | | | LCS - % Recovery | | | <u> </u> | | ' | | | | | Heavy Metals | | | | | | | | | | Aluminium | | | % | 89 | | 80-120 | Pass | | | Arsenic | | | % | 90 | | 80-120 | Pass | | | Barium | | | % | 83 | | 80-120 | Pass | | | Cadmium | | | % | 90 | | 80-120 | Pass | | | Chromium | | | % | 99 | | 80-120 | Pass | | | Cobalt | | | % | 101 | | 80-120 | Pass | | | Copper | | | % | 100 | | 80-120 | Pass | | | | | | % | 97 | | 80-120 | Pass | | | Iron | | | | 1 | | | | | | Lead | | | % | 102 | | 80-120 | Pass | | | Manganese | | | % | 90 | | 80-120 | Pass | | | Mercury | | | % | 108 | | 80-120 | Pass | | | Molybdenum | | | % | 98 | | 80-120 | Pass | | | Nickel | | | % | 100 | | 80-120 | Pass | | | Selenium | | | % | 90 | | 80-120 | Pass | | | Titanium | | | % | 95 | | 80-120 | Pass | | | Zinc | | | % | 100 | | 80-120 | Pass | | | Test | Lab Sample ID | QA
Source | Units | Result 1 | | Acceptance
Limits | Pass
Limits | Qualifying
Code | | Spike - % Recovery | | | | T | | 1 | | | | Heavy Metals | | | I | Result 1 | | | | | | Aluminium | S21-Jn31317 | NCP | % | 95 | | 75-125 | Pass | | | Spike - % Recovery | | | | | | 1 | | | | Heavy Metals | | | T | Result 1 | | 1 | | | | Arsenic | S21-Jn50392 | CP | % | 95 | | 75-125 | Pass | | | Barium | S21-Jn50392 | CP | % | 88 | | 75-125 | Pass | | | Cadmium | S21-Jn50392 | CP | % | 96 | | 75-125 | Pass | | | Chromium | S21-Jn50392 | CP | % | 106 | | 75-125 | Pass | | | Cobalt | S21-Jn50392 | CP | % | 109 | | 75-125 | Pass | | | Copper | S21-Jn50392 | CP | % | 109 | | 75-125 | Pass | | | Iron | S21-Jn50392 | CP | % | 104 | | 75-125 | Pass | | | Lead | S21-Jn50392 | СР | % | 110 | | 75-125 | Pass | | | Manganese | S21-Jn50392 | CP | % | 97 | | 75-125 | Pass | | | Test | Lab Sample ID | QA
Source | Units | Result 1 | | | Acceptance
Limits | Pass
Limits | Qualifying
Code | |--------------|---------------|--------------|-------|----------|----------|-----|----------------------|----------------|--------------------| | Mercury | S21-Jn50392 | CP | % | 119 | | | 75-125 | Pass | | | Molybdenum | S21-Jn50392 | CP | % | 107 | | | 75-125 | Pass | | | Nickel | S21-Jn50392 | CP | % | 108 | | | 75-125 | Pass | | | Selenium | S21-Jn50392 | CP | % | 104 | | | 75-125 | Pass | | | Titanium | S21-Jn50392 | CP | % | 97 | | | 75-125 | Pass | | | Zinc | S21-Jn50392 | CP | % | 105 | | | 75-125 | Pass | | | Test | Lab Sample ID | QA
Source | Units | Result 1 | | | Acceptance
Limits | Pass
Limits | Qualifying
Code | | Duplicate | | | | | | | | | | | Heavy Metals | | | | Result 1 | Result 2 | RPD | | | | | Arsenic | S21-Jn50391 | CP | mg/L | < 0.001 | < 0.001 | <1 | 30% | Pass | | | Barium | S21-Jn50391 | CP | mg/L | < 0.02 | < 0.02 | <1 | 30% | Pass | | | Cadmium | S21-Jn50391 | CP | mg/L | < 0.0002 | < 0.0002 | <1 | 30% | Pass | | | Chromium | S21-Jn50391 | CP | mg/L | < 0.001 | < 0.001 | <1 | 30% | Pass | | | Cobalt | S21-Jn50391 | CP | mg/L | < 0.001 | < 0.001 | <1 | 30% | Pass | | | Copper | S21-Jn50391 | CP | mg/L | < 0.001 | < 0.001 | <1 | 30% | Pass | | | Iron | S21-Jn50391 | CP | mg/L | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Lead | S21-Jn50391 | CP | mg/L | 0.039 | 0.002 | 180 | 30% | Fail | Q02 | | Manganese | S21-Jn50391 | CP | mg/L | < 0.005 | < 0.005 | <1 | 30% | Pass | | | Mercury | S21-Jn50391 | CP | mg/L | < 0.0001 | < 0.0001 | <1 | 30% | Pass | | | Molybdenum | S21-Jn50391 | CP | mg/L | 0.007 | < 0.005 | 160 | 30% | Fail | Q15 | | Nickel | S21-Jn50391 | CP | mg/L | < 0.001 | < 0.001 | <1 | 30% | Pass | | | Selenium | S21-Jn50391 | CP | mg/L | < 0.001 | < 0.001 | <1 | 30% | Pass | | | Titanium | S21-Jn50391 | CP | mg/L | < 0.005 | < 0.005 | <1 | 30% | Pass | | | Zinc | S21-Jn50391 | CP | mg/L | 0.008 | 0.008 | 3.0 | 30% | Pass | | Page 10 of 11 Report Number: 805698-W ## Comments # Sample Integrity Custody Seals Intact (if used) Attempt to Chill was evident Yes Sample correctly preserved No Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No # **Qualifier Codes/Comments** Code Description Q02 The duplicate %RPD is outside the recommended acceptance criteria. Further analysis indicates sample heterogeneity as the cause Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report. # Authorised by: John Nguyen Analytical Services Manager John Nguyen Senior Analyst-Metal (NSW) Glenn Jackson General Manager Final Report - this report replaces any previously issued Report - Indicates Not Requested - * Indicates NATA accreditation does not cover the performance of this service Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$ Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received. Report Number: 805698-W **Envirolab Services Pty Ltd** ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au # **CERTIFICATE OF ANALYSIS 272502** | Client Details | | |----------------|-------------------------------------| | Client | Ramboll Australia Pty Ltd | | Attention | Stephen Maxwell | | Address | PO Box 560, North Sydney, NSW, 2060 | | Sample Details
 | |--------------------------------------|---| | Your Reference | 318001193, Captains Flat Lead Management Plan | | Number of Samples | 2 Soil | | Date samples received | 24/06/2021 | | Date completed instructions received | 24/06/2021 | # **Analysis Details** Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. Please refer to the last page of this report for any comments relating to the results. | Report Details | | | |------------------------------------|---|--| | Date results requested by | 01/07/2021 | | | Date of Issue | 01/07/2021 | | | NATA Accreditation Number 2901. | This document shall not be reproduced except in full. | | | Accredited for compliance with ISO | IEC 17025 - Testing. Tests not covered by NATA are denoted with * | | **Results Approved By** Giovanni Agosti, Group Technical Manager Manju Dewendrage, Chemist **Authorised By** Nancy Zhang, Laboratory Manager | Acid Extractractable metals in soil | | | | |-------------------------------------|-------|------------|------------| | Our Reference | | 272502-1 | 272502-2 | | Your Reference | UNITS | QA45 | QA104 | | Date Sampled | | 4/06/2021 | 16/06/2021 | | Type of sample | | Soil | Soil | | Date prepared | - | 29/06/2021 | 29/06/2021 | | Date analysed | - | 29/06/2021 | 29/06/2021 | | Arsenic | mg/kg | <4 | 57 | | Barium | mg/kg | 35 | 18 | | Cadmium | mg/kg | <0.4 | 0.8 | | Chromium | mg/kg | 15 | 39 | | Cobalt | mg/kg | 9 | 2 | | Copper | mg/kg | 19 | 290 | | Iron | mg/kg | 24,000 | 37,000 | | Lead | mg/kg | 25 | 8,900 | | Manganese | mg/kg | 87 | 21 | | Mercury | mg/kg | <0.1 | 0.5 | | Molybdenum | mg/kg | <1 | 1 | | Nickel | mg/kg | 12 | 5 | | Selenium | mg/kg | <3 | <9 | | Titanium | mg/kg | 30 | 16 | | Zinc | mg/kg | 46 | 300 | | Aluminium | mg/kg | 7,300 | 18,000 | | Moisture | | | | |----------------|-------|------------|------------| | Our Reference | | 272502-1 | 272502-2 | | Your Reference | UNITS | QA45 | QA104 | | Date Sampled | | 4/06/2021 | 16/06/2021 | | Type of sample | | Soil | Soil | | Date prepared | - | 28/06/2021 | 28/06/2021 | | Date analysed | - | 29/06/2021 | 29/06/2021 | | Moisture | % | 22 | 11 | | Method ID | Methodology Summary | |------------|---| | Inorg-008 | Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours. | | | | | Metals-020 | Determination of various metals by ICP-AES. | | | | | Metals-021 | Determination of Mercury by Cold Vapour AAS. | | | | Envirolab Reference: 272502 Page | 4 of 8 Revision No: R00 | QUALITY CONT | ROL: Acid Ex | tractracta | ble metals in soil | | | Du | plicate | | Spike Red | overy % | |------------------|--------------|------------|--------------------|------------|------|------|---------|------|------------|---------| | Test Description | Units | PQL | Method | Blank | # | Base | Dup. | RPD | LCS-7 | [NT] | | Date prepared | - | | | 29/06/2021 | [NT] | | [NT] | [NT] | 29/06/2021 | | | Date analysed | - | | | 29/06/2021 | [NT] | | [NT] | [NT] | 29/06/2021 | | | Arsenic | mg/kg | 4 | Metals-020 | <4 | [NT] | | [NT] | [NT] | 103 | | | Barium | mg/kg | 1 | Metals-020 | <1 | [NT] | | [NT] | [NT] | 110 | | | Cadmium | mg/kg | 0.4 | Metals-020 | <0.4 | [NT] | | [NT] | [NT] | 101 | | | Chromium | mg/kg | 1 | Metals-020 | <1 | [NT] | | [NT] | [NT] | 108 | | | Cobalt | mg/kg | 1 | Metals-020 | <1 | [NT] | | [NT] | [NT] | 98 | | | Copper | mg/kg | 1 | Metals-020 | <1 | [NT] | | [NT] | [NT] | 101 | | | Iron | mg/kg | 10 | Metals-020 | <10 | [NT] | | [NT] | [NT] | 88 | | | Lead | mg/kg | 1 | Metals-020 | <1 | [NT] | | [NT] | [NT] | 102 | | | Manganese | mg/kg | 1 | Metals-020 | <1 | [NT] | | [NT] | [NT] | 103 | | | Mercury | mg/kg | 0.1 | Metals-021 | <0.1 | [NT] | | [NT] | [NT] | 128 | | | Molybdenum | mg/kg | 1 | Metals-020 | <1 | [NT] | | [NT] | [NT] | 101 | | | Nickel | mg/kg | 1 | Metals-020 | <1 | [NT] | | [NT] | [NT] | 102 | | | Selenium | mg/kg | 2 | Metals-020 | <2 | [NT] | | [NT] | [NT] | 100 | | | Titanium | mg/kg | 1 | Metals-020 | <1 | [NT] | | [NT] | [NT] | 98 | | | Zinc | mg/kg | 1 | Metals-020 | <1 | [NT] | | [NT] | [NT] | 97 | | | Aluminium | mg/kg | 10 | Metals-020 | <10 | [NT] | | [NT] | [NT] | 114 | | | Result Definiti | ons | |-----------------|---| | NT | Not tested | | NA | Test not required | | INS | Insufficient sample for this test | | PQL | Practical Quantitation Limit | | < | Less than | | > | Greater than | | RPD | Relative Percent Difference | | LCS | Laboratory Control Sample | | NS | Not specified | | NEPM | National Environmental Protection Measure | | NR | Not Reported | | Quality Contro | ol Definitions | |------------------------------------|--| | Blank | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. | | Duplicate | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable. | | Matrix Spike | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. | | LCS (Laboratory
Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample. | | Surrogate Spike | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples. | Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011. The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016 Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2 # **Laboratory Acceptance Criteria** Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria. Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction. Spikes for Physical and Aggregate Tests are not applicable. For VOCs in water samples, three vials are required for duplicate or spike analysis. Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable. In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols. When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable. Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached. Measurement Uncertainty estimates are available for most tests upon request. Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default. Page | 7 of 8 Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012. # **Report Comments** All Metals in soil - The PQL for Se has been raised due to interferences from analytes (other than those being tested) in samples 272502-1 and -2. Envirolab Reference: 272502 Page | 8 of 8 Revision No: R00 Ramboll Environ Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060 NATA Accredited Accreditation
Number 1261 Site Number 18217 Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection and proficiency testing scheme providers reports. Attention: Stephen Maxwell Report 800910-S Project name CAPTAINS FLAT LEAD MANAGEMENT PLAN Project ID 318001193 Received Date Jun 04, 2021 | Client Sample ID
Sample Matrix | | | SED1
Soil | SED2
Soil | SED3
Soil | SED4
Soil | |-----------------------------------|-----|-------|--------------|--------------|--------------|--------------| | Eurofins Sample No. | | | S21-Jn12576 | S21-Jn12577 | S21-Jn12578 | S21-Jn12579 | | Date Sampled | | | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | | Test/Reference | LOR | Unit | | | | | | Heavy Metals | • | | | | | | | Arsenic | 2 | mg/kg | 69 | 44 | 36 | 140 | | Barium | 10 | mg/kg | 490 | 300 | 150 | 180 | | Cadmium | 0.4 | mg/kg | 22 | 5.5 | 4.6 | 1.1 | | Chromium | 5 | mg/kg | 21 | 26 | 18 | < 5 | | Cobalt | 5 | mg/kg | 40 | 16 | 9.9 | < 5 | | Copper | 5 | mg/kg | 520 | 430 | 490 | 130 | | Iron | 20 | mg/kg | 37000 | 36000 | 59000 | 130000 | | Lead | 5 | mg/kg | 1500 | 2400 | 2500 | 1100 | | Manganese | 5 | mg/kg | 1900 | 750 | 190 | 160 | | Mercury | 0.1 | mg/kg | 0.3 | 0.2 | 0.2 | 0.1 | | Molybdenum | 5 | mg/kg | < 5 | < 5 | < 5 | < 5 | | Nickel | 5 | mg/kg | 37 | 19 | 15 | < 5 | | Selenium | 2 | mg/kg | 4.4 | < 2 | < 2 | < 2 | | Titanium | 10 | mg/kg | 320 | 380 | 230 | 590 | | Zinc | 5 | mg/kg | 11000 | 3600 | 3700 | 1500 | | | | | | | | | | % Moisture | 1 | % | 80 | 74 | 60 | 69 | | Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled | | | SED5
Soil
S21-Jn12580
Jun 03, 2021 | SED6
Soil
S21-Jn12581
Jun 03, 2021 | SED7
Soil
S21-Jn12582
Jun 03, 2021 | SED8
Soil
S21-Jn12583
Jun 03, 2021 | |---|-----|-------|---|---|---|---| | Test/Reference | LOR | Unit | | | | | | Heavy Metals | | | | | | | | Arsenic | 2 | mg/kg | 140 | 13 | 17 | 44 | | Barium | 10 | mg/kg | 630 | 38 | 41 | 140 | | Cadmium | 0.4 | mg/kg | 1.1 | 4.8 | 0.9 | 1.4 | | Chromium | 5 | mg/kg | 11 | 18 | 23 | 11 | | Cobalt | 5 | mg/kg | < 5 | 18 | 6.0 | < 5 | | Copper | 5 | mg/kg | 600 | 320 | 51 | 260 | | Iron | 20 | mg/kg | 230000 | 18000 | 19000 | 21000 | | Lead | 5 | mg/kg | 6700 | 220 | 260 | 550 | | Manganese | 5 | mg/kg | 86 | 260 | 93 | 67 | | Mercury | 0.1 | mg/kg | 0.4 | < 0.1 | < 0.1 | 0.4 | Report Number: 800910-S | Client Sample ID
Sample Matrix
Eurofins Sample No. | | | SED5
Soil
S21-Jn12580 | SED6
Soil
S21-Jn12581 | SED7
Soil
S21-Jn12582 | SED8
Soil
S21-Jn12583 | |--|-----|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------| | Date Sampled | | | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | | Test/Reference | LOR | Unit | | | | | | Heavy Metals | | | | | | | | Molybdenum | 5 | mg/kg | < 5 | < 5 | < 5 | < 5 | | Nickel | 5 | mg/kg | < 5 | 11 | 8.9 | < 5 | | Selenium | 2 | mg/kg | < 2 | < 2 | < 2 | < 2 | | Titanium | 10 | mg/kg | 430 | 240 | 180 | 350 | | Zinc | 5 | mg/kg | 1700 | 1300 | 600 | 500 | | | | | | | | | | % Moisture | 1 | % | 33 | 20 | 13 | 16 | | Client Sample ID | | | SED9 | SED10 | SED11 | SED12 | |---------------------|-----|-------|--------------|--------------|--------------|--------------| | Sample Matrix | | | Soil | Soil | Soil | Soil | | Eurofins Sample No. | | | S21-Jn12584 | S21-Jn12585 | S21-Jn12586 | S21-Jn12587 | | Date Sampled | | | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | | Test/Reference | LOR | Unit | | | | | | Heavy Metals | | • | | | | | | Arsenic | 2 | mg/kg | 70 | 84 | 130 | 75 | | Barium | 10 | mg/kg | 56 | 1400 | 250 | 78 | | Cadmium | 0.4 | mg/kg | < 0.4 | 3.7 | 1.9 | < 0.4 | | Chromium | 5 | mg/kg | 6.7 | 6.6 | 20 | 6.9 | | Cobalt | 5 | mg/kg | 11 | < 5 | 6.2 | < 5 | | Copper | 5 | mg/kg | 80 | 1300 | 320 | 94 | | Iron | 20 | mg/kg | 29000 | 63000 | 68000 | 57000 | | Lead | 5 | mg/kg | 380 | 5900 | 1000 | 550 | | Manganese | 5 | mg/kg | 110 | 220 | 220 | 66 | | Mercury | 0.1 | mg/kg | < 0.1 | < 0.1 | 0.2 | < 0.1 | | Molybdenum | 5 | mg/kg | < 5 | 19 | < 5 | < 5 | | Nickel | 5 | mg/kg | < 5 | 5.2 | 11 | < 5 | | Selenium | 2 | mg/kg | < 2 | 2.9 | 2.3 | < 2 | | Titanium | 10 | mg/kg | 540 | 140 | 170 | 94 | | Zinc | 5 | mg/kg | 190 | 21000 | 2000 | 650 | | % Moisture | 1 | % | 19 | 21 | 56 | 29 | | Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference | LOR | Unit | SED13
Soil
S21-Jn12588
Jun 03, 2021 | SED14
Soil
S21-Jn12589
Jun 03, 2021 | SED15
Soil
S21-Jn12590
Jun 03, 2021 | QA35
Soil
S21-Jn12591
Jun 03, 2021 | |--|------|-------|--|--|--|---| | Heavy Metals | LOIX | Offic | | | | | | Arsenic | 2 | mg/kg | 27 | 13 | 2.8 | 110 | | Barium | 10 | mg/kg | 190 | 140 | 53 | 470 | | Cadmium | 0.4 | mg/kg | < 0.4 | 0.7 | < 0.4 | 0.5 | | Chromium | 5 | mg/kg | 9.0 | 15 | < 5 | 8.7 | | Cobalt | 5 | mg/kg | < 5 | 12 | < 5 | < 5 | | Copper | 5 | mg/kg | 180 | 37 | 13 | 430 | | Iron | 20 | mg/kg | 8300 | 13000 | 5300 | 270000 | | Lead | 5 | mg/kg | 730 | 150 | 76 | 4400 | | Client Sample ID
Sample Matrix | | | | SED13
Soil | SED14
Soil | SED15
Soil | QA35
Soil | |-----------------------------------|---|-----|-------|---------------|---------------|---------------|--------------| | Eurofins Sample No. | | | | S21-Jn12588 | S21-Jn12589 | S21-Jn12590 | S21-Jn12591 | | · | | | | | | | | | Date Sampled | | | | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | | Test/Reference | L | .OR | Unit | | | | | | Heavy Metals | | | | | | | | | Manganese | | 5 | mg/kg | 72 | 550 | 190 | 65 | | Mercury | | 0.1 | mg/kg | 0.3 | < 0.1 | < 0.1 | 0.3 | | Molybdenum | | 5 | mg/kg | < 5 | < 5 | < 5 | < 5 | | Nickel | | 5 | mg/kg | < 5 | 20 | < 5 | < 5 | | Selenium | | 2 | mg/kg | < 2 | < 2 | < 2 | < 2 | | Titanium | | 10 | mg/kg | 100 | 160 | 120 | 330 | | Zinc | | 5 | mg/kg | 230 | 500 | 81 | 1300 | | | | | | | | | | | % Moisture | | 1 | % | 25 | 71 | 33 | 42 | # Sample History Where samples are submitted/analysed over several days, the last date of extraction is reported. If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time. | Description | Testing Site | Extracted | Holding Time | |--|--------------|--------------|---------------------| | Metals M8 | Sydney | Jun 07, 2021 | 180 Days | | - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS | | | | | Heavy Metals | Sydney | Jun 07, 2021 | 180 Days | | - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS | | | | | % Moisture | Sydney | Jun 05, 2021 | 14 Days | - Method: LTM-GEN-7080 Moisture Report Number: 800910-S Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Box 60 Wrickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Perth 46-48 Banksia Road Welshool WA 6106 Phone: +618 9251 9600 NATA # 1261 Site # 23736 1/21 Smallwood Place Murarrie QLD 4172 5 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Sydney Unit F3, Building F 16 Mars Road 6 Monterey Road Dandenong South VIC 3175 1 Phone: +61 3 8564 5000 L NATA # 1261 Site # 1254 & 14271 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway North Sydney NSW 2060 Ramboll Australia Pty Ltd Company Name: Address: **Environment Testing** eurofins 😁 Australia Melbourne Phone: 318001193 Order No.: Report #: 800910 CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: Received: **Priority:** Due: Jun 4, 2021 5:45 PM Contact Name: 5 Day Stephen Maxwell Jun 11, 2021 # Eurofins Analytical Services Manager: Andrew Black Moisture Set | Sample Detail | shoratory - NATA Site # 1254 & 14271 | |-------------------------|--------------------------------------| | Barium | | | Barium (filtered) | | | Cobalt | | | HOLD Cobalt (filtered) | | | Iron | | | Iron (filtered) | | | Manganese | | | Manganese (filtered) | | | Molybdenum | | | Molybdenum (filtered) | | | Selenium | | | Selenium (filtered) | | | Titanium | | | Titanium (filtered) | | | Metals M8 | | | Metals M8 filtered | | | Hardness Set | | | 14271 | | |--|---------------------------------------| | త | | | 1254 | 17 | | # | 82 | | ij | # | | S | ė | | ₹ | Si | | ₹ | ⋖ | | 7 | ٦ | | > | Ž | | $\overline{}$ | ١. | | ¥ | > | | ratc | 20 | | borate | atory | | Laborate | oratory | | ne Laboratory - NATA Site # 1254 & 14271 | aboratory | | urne Laborato | v Laboratory | | ourne Laborate | nev Laboratory | | elbourne Laborato | dnev Laboratory | | Melbourne Laborato | Sydney Laboratory - NATA Site # 18217 | Sydney × × × × × × × × × × × × × × × × × × × Brisbane Laboratory - NATA Site # 20794 Perth Laboratory - NATA Site # 23736 Mayfield Laboratory - NATA Site # 25079 Sample ID **External Laboratory** Sample Date ٩ Sampling Time Jun 03, 2021 Jun 03, 2021 SW2 SW3
SW1 Water Water Jun 03, 2021 Jun 03, 2021 Jun 03, 2021 Water Water Water Water Water Jun 03, 2021 Jun 03, 2021 > SW5 SW6 15 9 SW4 Eurofins Environment Testing Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 × × × × × × × × > × × × > > × × × × × × × × × × × × × × S21-Jn12565 S21-Jn12566 S21-Jn12567 S21-Jn12563 S21-Jn12564 S21-Jn12562 × S21-Jn12568 S21-Jn12569 Water Water Jun 03, 2021 Jun 03, 2021 SW8 SW9 SW7 × \times × S21-Jn12561 LAB ID Matrix × × × × × × × × × × × × × \times × × × × ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 Melbourne Australia 6 Monterey Road Dandenong South VIC 3175 1 Phone: +61 3 8564 5000 L NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +612 9900 8400 NATA# 1261 Site# 18217 Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** 1/21 Smallwood Place Murarrie QLD 4172 5 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 318001193 Order No.: Report #: Phone: CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: Perth 46-48 Banksia Road Welshool WA 6106 Phone: +618 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Box 60 Wrickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Received: **Priority:** Due: Contact Name: Jun 4, 2021 5:45 PM Jun 11, 2021 5 Day Stephen Maxwell | Moisture S | |---------------| | Hardness | | Metals M8 | | Metals M8 | | Titanium (1 | | Titanium | | Selenium (| | Selenium | | Molybdenu | | Molybdenu | | Manganes | | Manganes | | Iron (filtere | | Iron | | HOLD | | Cobalt (filte | | Cobalt | | Barium (fil | | Barium | | | | | et Set filtered filtered) filtered) ım (filtered) um se (filtered) ed) ered) × tered) × Melbourne Laboratory - NATA Site # 1254 & 14271 Sample Detail Sydney Laboratory - NATA Site # 18217 × \times \times × S21-Jn12572 S21-Jn12573 S21-Jn12574 S21-Jn12575 S21-Jn12570 S21-Jn12571 Water Water Water Water Water Mayfield Laboratory - NATA Site # 25079 Jun 03, 2021 **External Laboratory** SW10 SW12 SW11 SW13 SW14 SW15 10 7 73 4 15 × S21-Jn12579 S21-Jn12576 S21-Jn12578 S21-Jn12577 Soil Soil Soil Soil Jun 03, 2021 SED3 SED2 SED4 SED1 16 8 17 Eurofins Analytical Services Manager: Andrew Black × Brisbane Laboratory - NATA Site # 20794 Perth Laboratory - NATA Site # 23736 × × × × × × × × × × × × × S21-Jn12580 Jun 03, 2021 SED5 Melbourne Australia Site # 1254 & 14271 ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 6 Monterey Road Dandenong South VIC 3175 16 Phone: +61 3 8564 5000 LANTA # 1261 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +617 3902 4600 NATA # 1261 Site # 20794 318001193 800910 Order No.: Report #: Phone: Fax: CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **New Zealand** Contact Name: Received: Priority: Due: Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Box 60 Wickham 2293 Phone: +61'2 4968 8448 NATA # 1261 Site # 25079 Jun 4, 2021 5:45 PM Stephen Maxwell Jun 11, 2021 5 Day **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **Eurofins Analytical Services Manager: Andrew Black** | Moisture Set | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | |-----------------------|---|---------------------------------------|---|--------------------------------------|---|----------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | Hardness Set | | × | | | | | | | | | | | | | | | | | Metals M8 filtered | | × | | | | | | | | | | | | | | | | | Metals M8 | | × | | | | | X | X | X | X | X | X | X | X | X | X | × | | Titanium (filtered) | | × | | | | | | | | | | | | | | | | | Titanium | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | Selenium (filtered) | | × | | | | | | | | | | | | | | | Ш | | Selenium | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | Molybdenum (filtered) | | × | | | | | | | | | | | | | | | | | Molybdenum | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | Manganese (filtered) | | × | | | | | | | | | | | | | | | | | Manganese | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | Iron (filtered) | | × | | | | | | | | | | | | | | | Ш | | Iron | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | HOLD | | × | | | | | | | | | | | | | | | | | Cobalt (filtered) | | × | | | | | | | | | | | | | | | Ш | | Cobalt | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | Barium (filtered) | | × | | | | | | | | | | | | | | | | | Barium | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | | | | | | | | S21-Jn12581 | S21-Jn12582 | S21-Jn12583 | S21-Jn12584 | S21-Jn12585 | S21-Jn12586 | S21-Jn12587 | S21-Jn12588 | S21-Jn12589 | S21-Jn12590 | S21-Jn12591 | | | | | | | | | Soil | Sample Detail | Melbourne Laboratory - NATA Site # 1254 & 14271 | 9 # 18217 | ite # 20794 | 1 23736 | te # 25079 | | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | | | | / - NATA Site | ry - NATA Si | NATA Site # | y - NATA Sit | ý | Jun 03, 2021 | | ourne Labora | Sydney Laboratory - NATA Site # 18217 | Brisbane Laboratory - NATA Site # 20794 | Perth Laboratory - NATA Site # 23736 | Mayfield Laboratory - NATA Site # 25079 | External Laboratory | SED6 | SED7 | SED8 | SED9 | SED10 | SED11 | SED12 | SED13 | SED14 | SED15 | QA35 | | | Melb | Sydı | Bris | Pert | May | Exte | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | Melbourne Australia 6 Monterey Road Dandenong South VIC 3175 1 Phone: +61 3 8564 5000 L NATA # 1261 Site # 1254 & 14271 ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +612 9900 8400 NATA# 1261 Site# 18217 Brisbane 1/21 Smallwood Place 1/21 Smallwood Place Murarie QLD 4172 5 Phone: +617 3902 4600 NATA# 1261 Site # 20794 318001193 800910 Order No.: Report #: Phone: CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Box 60 Wrickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Perth 46-48 Banksia Road Welshool WA 6106 Phone: +618 9251 9600 NATA # 1261 Site # 23736 Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** Received: Due: Jun 4, 2021 5:45 PM Contact Name: Priority: Jun 11, 2021 5 Day Stephen Maxwell Eurofins Analytical Services Manager: Andrew Black Moisture Set Hardness Set Metals M8 filtered Metals M8 Titanium (filtered) Titanium Selenium (filtered) Selenium Molybdenum (filtered) Molybdenum Manganese (filtered) Manganese Iron (filtered) Iron HOLD Cobalt (filtered) Cobalt Barium (filtered) Barium Sample Detail × × × × × × × × × × × × × × × × Melbourne Laboratory - NATA Site # 1254 & 14271 Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217 Mayfield Laboratory - NATA Site # 25079 **External Laboratory** QA35 32 33 34 35 36 R02 R03 R04 R01 Jun 03, 2021 Perth Laboratory - NATA Site # 23736 × × × × × × × × × × × × × × × S21-Jn12592 S21-Jn12593 S21-Jn12594 > Water Water Water Water Soil S21-Jn12595 S21-Jn12596 S21-Jn12598 Soil Soil Jun 03, 2021 Jun 03, 2021 Jun 03, 2021 QA02 QA03 QA04 38 39 40 QA01 37 Jun 03, 2021 Jun 03, 2021 QA06 QA05 S21-Jn12597 S21-Jn12600 S21-Jn12601 S21-Jn12602 Soil Soil S21-Jn12599 × × × × × × × × × × Melbourne Australia 6 Monterey Road Dandenong South VIC 3175 1Phone: +61 3 8564 5000 NATA # 1261 P Site # 1254 & 14271 ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +612 9900 8400 NATA# 1261 Site# 18217 Brisbane 1/21 Smallwood Place Murarine QLD 4172 S Phone: +617 3902 4600 NATA# 1261 Site # 20794 318001193 800910 Order No.: Phone: CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Box 60 Wrickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Received: Perth 46-48 Banksia Road Weisnpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** Contact Name: **Priority:** Due: 5 Day Stephen Maxwell Ha Me
Me Titl Ti S М М М М Н Jun 11, 2021 Jun 4, 2021 5:45 PM Eurofins Analytical Services Manager: Andrew Black | Sample Detail | : Laboratory - NATA Site # 1254 & 14271 | boratory - NATA Site # 18217 | |------------------------------|---|------------------------------| | Barium | | × | | Barium (filtered) | | × | | Cobalt | | × | | Cobalt (filtered) | | × | | HOLD | | × | | Iron | | × | | Iron (filtered) | | × | | Manganese | | × | | Manganese (filtered) | | × | | Molybdenum (intered) | | × | | Molybdenum (filtered) | | × | | Selenium (filtered) Selenium | | ^
× | | Titanium | | × | | Titanium (filtered) | | × | | Metals M8 | | × | | Metals M8 filtered | | × | | Hardness Set | | × | | Moisture Set | | × | | | | | | ne Laboratory - NATA Site # 1254 & 14271 | | | | | | | |--|---|---|---|---|---|---| | -aboratory - NATA Site # 18217 | × | × | × | × | × | × | Brisbane Laboratory - NATA Site # 20794 Perth Laboratory - NATA Site # 23736 Sydney L Melbourn Mayfield Laboratory - NATA Site # 25079 Jun 03, 2021 External Laboratory QA07 43 × × × × × × × × × × × QA08 QA09 QA10 44 45 Jun 03, 2021 Jun 03, 2021 Jun 03, 2021 Soil Soil Soil S21-Jn12605 S21-Jn12606 S21-Jn12603 S21-Jn12604 S21-Jn12607 S21-Jn12608 Jun 03, 2021 QA11 **QA12** QA13 QA14 46 47 48 49 50 51 52 Soil Soil Jun 03, 2021 Soil Soil Soil Soil Jun 03, 2021 QA15 QA16 QA17 S21-Jn12612 S21-Jn12613 S21-Jn12610 S21-Jn12611 S21-Jn12609 ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 Australia 6 Monterey Road Dandenong South VIC 3175 1Phone: +61 3 8564 5000 NATA # 1261 P Melbourne Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +612 9900 8400 NATA# 1261 Site# 18217 Brisbane 1/21 Smallwood Place Murarie QLD 4172 S Phone : +617 3902 4600 NATA # 1261 Site # 20794 318001193 800910 02 9954 8118 02 9954 8150 Order No.: Report #: Phone: CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: Perth 46-48 Banksia Road Welshool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Box 60 Wrickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Received: Due: Jun 4, 2021 5:45 PM Contact Name: **Priority:** Stephen Maxwell Jun 11, 2021 5 Day Eurofins Analytical Services Manager: Andrew Black | Ediomis Amarytical oct vices intaliaget . A | Moisture S | |---|---------------| | | Hardness | | | Metals M8 | | | Metals M8 | | | Titanium (| | 2 | Titanium | | 1 | Selenium | | | Selenium | | | Molybden | | | Molybden | | | Manganes | | | Manganes | | | Iron (filtere | | | Iron | | | HOLD | | | Cobalt (filt | | | Cobalt | | | Barium (fil | | | Barium | | | | × Set Set 3 filtered (filtered) (filtered) um (filtered) um se (filtered) se ed) ered) tered) Melbourne Laboratory - NATA Site # 1254 & 14271 Sample Detail × × × × × × × × × × × × × × Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217 Perth Laboratory - NATA Site # 23736 × × Mayfield Laboratory - NATA Site # 25079 External Laboratory QA18 54 × × × × × × × × × × × Jun 03, 2021 Jun 03, 2021 QA19 22 99 57 58 QA20 Soil Soil Soil Jun 03, 2021 S21-Jn12616 S21-Jn12615 S21-Jn12614 S21-Jn12618 S21-Jn12619 S21-Jn12617 Jun 03, 2021 QA22 QA21 QA23 QA24 QA25 QA26 59 Jun 03, 2021 Soil Soil Soil Soil Soil Soil Jun 03, 2021 QA27 62 61 QA28 S21-Jn12622 S21-Jn12623 S21-Jn12624 S21-Jn12620 S21-Jn12621 eurofins eurofins # **Environment Testing** Melbourne Australia 6 Monterey Road Dandenong South VIC 3175 1 Phone: +61 3 8564 5000 L NATA # 1261 Site # 1254 & 14271 ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +612 9900 8400 NATA# 1261 Site# 18217 Brisbane 1/21 Smallwood Place 1/21 Smallwood Place Murarie QLD 4172 5 Phone: +617 3902 4600 NATA# 1261 Site # 20794 800910 02 9954 8118 02 9954 8150 318001193 Order No.: Report #: Phone: Perth 46-48 Banksia Road Welshool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Box 60 Wrickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** Contact Name: Priority: Due: Jun 11, 2021 5 Day Jun 4, 2021 5:45 PM Received: Stephen Maxwell Eurofins Analytical Services Manager: Andrew Black Titanium Selenium Molybdenum Molybdenum (filtered) Selenium (filtered) Manganese (filtered) Manganese Iron (filtered) Cobalt (filtered) Barium (filtered) Sample Detail Iron HOLD Cobalt Barium CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: Titanium (filtered) Metals M8 Hardness Set Metals M8 filtered Moisture Set × × × × × × × × × × × × × × × × Melbourne Laboratory - NATA Site # 1254 & 14271 Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217 Mayfield Laboratory - NATA Site # 25079 **External Laboratory** QA29 QA30 65 99 29 69 70 7 QA32 QA33 **QA34** QA31 Perth Laboratory - NATA Site # 23736 × × × × × × × × × × S21-Jn12629 S21-Jn12630 S21-Jn12631 S21-Jn12632 S21-Jn12633 × S21-Jn12625 S21-Jn12626 S21-Jn12627 S21-Jn12628 > Soil Soil Soil Soil Soil Soil Jun 03, 2021 S21-Jn12635 S21-Jn12634 Soil Soil Jun 03, 2021 QA40 QA41 Jun 03, 2021 Soil Soil Jun 03, 2021 QA38 QA39 QA37 Jun 03, 2021 Jun 03, 2021 16 15 16 32 16 32 16 32 16 32 16 32 16 32 16 32 16 32 S21-Jn12640 Soil Jun 03, 2021 **Test Counts** 80 QA46 QA43 QA42 9/ QA45 QA44 78 29 × 48 # **Environment Testing** ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 Australia 6 Monterey Road Dandenong South VIC 3175 1 Phone: +61 3 8564 5000 L NATA # 1261 Melbourne Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +612 9900 8400 NATA# 1261 Site# 18217 Brisbane 1/21 Smallwood Place 1/21 Smallwood Place Murarie QLD 4172 5 Phone: +617 3902 4600 NATA# 1261 Site # 20794 800910 Order No.: Report #: Phone: CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: Perth 46-48 Banksia Road Welshool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Box 60 Wrickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Received: Contact Name: Priority: Due: Jun 11, 2021 Jun 4, 2021 5:45 PM 5 Day Stephen Maxwell Eurofins Analytical Services Manager: Andrew Black × Moisture Set Hardness Set × × Metals M8 filtered Metals M8 × Titanium (filtered) × Titanium × Selenium (filtered) Selenium × × Molybdenum (filtered) × Molybdenum × Manganese (filtered) × Manganese Iron (filtered) Iron × × × × × HOLD × Cobalt (filtered) Cobalt × × Barium (filtered) × Barium S21-Jn12638 S21-Jn12639 S21-Jn12636 S21-Jn12637 Soil Soil Soil Soil Melbourne Laboratory - NATA Site # 1254 & 14271 Sample Detail Brisbane Laboratory - NATA Site # 20794 Mayfield Laboratory - NATA Site # 25079 Sydney Laboratory - NATA Site # 18217 Perth Laboratory - NATA Site # 23736 Jun 03, 2021 Jun 03, 2021 Jun 03, 2021 Jun 03, 2021 External Laboratory # **Internal Quality Control Review and Glossary** ## General - Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request. - 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated. - 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated. - 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences. - 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds - 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise. - 7. Samples were analysed on an 'as received' basis. - 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results. - 9. This report replaces any interim results previously issued. # **Holding Times** Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001). For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control. For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD ## Units mg/kg: milligrams per
kilogram mg/L: milligrams per litre ug/L: micrograms per litre org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres ## **Terms** Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis. LOR Limit of Reporting SPIKE Addition of the analyte to the sample and reported as percentage recovery. RPD Relative Percent Difference between two Duplicate pieces of analysis. LCS Laboratory Control Sample - reported as percent recovery. CRM Certified Reference Material - reported as percent recovery. Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water. Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery. **Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show comparison. USEPA United States Environmental Protection Agency APHA American Public Health Association TCLP Toxicity Characteristic Leaching Procedure COC Chain of Custody SRA Sample Receipt Advice QSM US Department of Defense Quality Systems Manual Version 5.3 CP Client Parent - QC was performed on samples pertaining to this report NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within. TEQ Toxic Equivalency Quotient # QC - Acceptance Criteria RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable: Results <10 times the LOR : No Limit Results between 10-20 times the LOR: RPD must lie between 0-50% Results >20 times the LOR : RPD must lie between 0-30% Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected. WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA # **QC Data General Comments** - 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided. - 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples. - 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS. - 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike. - 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report. - 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt. - 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte. - 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS. - 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample. - 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data. # **Quality Control Results** | | Test | | Units | Result 1 | | Acceptance
Limits | Pass
Limits | Qualifying
Code | |--------------------|---------------|--------------|----------|----------|-----|----------------------|----------------|--------------------| | Method Blank | | | | | | | | | | Heavy Metals | | | | | | | | | | Arsenic | | | mg/kg | < 2 | | 2 | Pass | | | Barium | | | mg/kg | < 10 | | 10 | Pass | | | Cadmium | | | mg/kg | < 0.4 | | 0.4 | Pass | | | Chromium | | | mg/kg | < 5 | | 5 | Pass | | | Cobalt | | | mg/kg | < 5 | | 5 | Pass | | | Copper | | | mg/kg | < 5 | | 5 | Pass | | | Iron | | | mg/kg | < 20 | | 20 | Pass | | | Lead | | | mg/kg | < 5 | | 5 | Pass | | | Manganese | | | mg/kg | < 5 | | 5 | Pass | | | Mercury | | | mg/kg | < 0.1 | | 0.1 | Pass | | | Molybdenum | | | mg/kg | < 5 | | 5 | Pass | | | Nickel | | | mg/kg | < 5 | | 5 | Pass | | | Selenium | | | mg/kg | < 2 | | 2 | Pass | | | Titanium | | | mg/kg | < 10 | | 10 | Pass | | | Zinc | | | mg/kg | < 5 | | 5 | Pass | | | LCS - % Recovery | | | <u> </u> | | | | | | | Heavy Metals | | | | | | | | | | Arsenic | | | % | 97 | | 80-120 | Pass | | | Barium | | | % | 103 | | 80-120 | Pass | | | Cadmium | | | % | 101 | | 80-120 | Pass | | | Chromium | | | % | 101 | | 80-120 | Pass | | | Cobalt | | | % | 100 | | 80-120 | Pass | | | Copper | | | % | 100 | | 80-120 | Pass | | | Iron | | | % | 103 | | 80-120 | Pass | | | Lead | | | % | 99 | | 80-120 | Pass | | | | | | % | 100 | | 80-120 | Pass | | | Manganese | | | | | | | | | | Mercury | | | % | 98 | | 80-120 | Pass | | | Molybdenum | | | % | 111 | | 80-120 | Pass | | | Nickel | | | % | 98 | | 80-120 | Pass | | | Selenium | | | % | 106 | | 80-120 | Pass | | | Titanium | | | % | 100 | | 80-120 | Pass | | | Zinc | | T | % | 95 | | 80-120 | Pass | | | Test | Lab Sample ID | QA
Source | Units | Result 1 | | Acceptance
Limits | Pass
Limits | Qualifying
Code | | Spike - % Recovery | | | | D 11.4 | T T | Ι | | | | Heavy Metals | 201 1 10010 | | 0,4 | Result 1 | | | | | | Barium | S21-Jn12648 | NCP | % | 111 | | 75-125 | Pass | | | Cadmium | S21-Jn12700 | NCP | % | 92 | | 75-125 | Pass | | | Chromium | S21-Jn12700 | NCP | % | 117 | | 75-125 | Pass | | | Cobalt | S21-Jn12700 | NCP | % | 101 | | 75-125 | Pass | | | Lead | S21-Jn12700 | NCP | % | 92 | | 75-125 | Pass | | | Mercury | S21-Jn12700 | NCP | % | 93 | | 75-125 | Pass | | | Molybdenum | S21-Jn12446 | NCP | % | 88 | | 75-125 | Pass | | | Nickel | S21-Jn12700 | NCP | % | 108 | | 75-125 | Pass | | | Selenium | S21-Jn12700 | NCP | % | 88 | | 75-125 | Pass | | | Spike - % Recovery | | | | | | | | | | Heavy Metals | | | | Result 1 | | | | | | Arsenic | S21-Jn12584 | CP | % | 122 | | 75-125 | Pass | | | Copper | S21-Jn12584 | CP | % | 117 | | 75-125 | Pass | | | Manganese | S21-Jn12584 | CP | % | 103 | 1 | 75-125 | Pass | | | Test | Lab Sample ID | QA
Source | Units | Result 1 | | | Acceptance
Limits | Pass
Limits | Qualifying
Code | |--------------|---------------|--------------|-------|----------|----------|-----|----------------------|----------------|--------------------| | Titanium | S21-Jn12584 | CP | % | 81 | | | 75-125 | Pass | | | Zinc | S21-Jn12584 | CP | % | 107 | | | 75-125 | Pass | | | Test | Lab Sample ID | QA
Source | Units | Result 1 | | | Acceptance
Limits | Pass
Limits | Qualifying
Code | | Duplicate | | | | | | | | | | | Heavy Metals | | | | Result 1 | Result 2 | RPD | | | | | Arsenic | S21-Jn12583 | CP | mg/kg | 44 | 37 | 17 | 30% | Pass | | | Barium | S21-Jn12583 | CP | mg/kg | 140 | 140 | 5.0 | 30% | Pass | | | Cadmium | S21-Jn12583 | CP | mg/kg | 1.4 | 1.2 | 16 | 30% | Pass | | | Chromium | S21-Jn12583 | CP | mg/kg | 11 | 9.9 | 6.0 | 30% | Pass | | | Cobalt | S21-Jn12583 | CP | mg/kg | < 5 | < 5 | <1 | 30% | Pass | | | Copper | S21-Jn12583 | CP | mg/kg | 260 | 200 | 27 | 30% | Pass | | | Iron | S21-Jn12583 | CP | mg/kg | 21000 | 19000 | 8.0 | 30% | Pass | | | Lead | S21-Jn12583 | CP | mg/kg | 550 | 400 | 32 | 30% | Fail | Q15 | | Manganese | S21-Jn12583 | CP | mg/kg | 67 | 82 | 21 | 30% | Pass | | | Mercury | S21-Jn12583 | CP | mg/kg | 0.4 | 0.4 | 17 | 30% | Pass | | | Molybdenum | S21-Jn12583 | CP | mg/kg | < 5 | < 5 | <1 | 30% | Pass | | | Nickel | S21-Jn12583 | CP | mg/kg | < 5 | < 5 | <1 | 30% | Pass | | | Selenium | S21-Jn12583 | CP | mg/kg | < 2 | < 2 | <1 | 30% | Pass | | | Titanium | S21-Jn12583 | CP | mg/kg | 350 | 380 | 9.0 | 30% | Pass | | | Zinc | S21-Jn12583 | CP | mg/kg | 500 | 530 | 6.0 | 30% | Pass | | | Duplicate | | | | | | | | | | | | | | | Result 1 | Result 2 | RPD | | | | | % Moisture | S21-Jn12583 | CP | % | 16 | 17 | 7.0 | 30% | Pass | | ## Comments # Sample Integrity Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No # **Qualifier Codes/Comments** Code Description Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report. # Authorised by: Andrew Black Analytical Services Manager John Nguyen Senior Analyst-Metal (NSW) Glenn Jackson General Manager Final Report - this report replaces any previously issued Report - Indicates Not Requested - * Indicates NATA accreditation does not cover the performance of this service Measurement uncertainty of test data is available on request or please click here. Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be
reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received. Report Number: 800910-S Ramboll Environ Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060 NATA Accredited Accreditation Number 1261 Site Number 18217 Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection and proficiency testing scheme providers reports. Attention: Stephen Maxwell Report 800910-W Project name CAPTAINS FLAT LEAD MANAGEMENT PLAN Project ID 318001193 Received Date Jun 04, 2021 | Client Sample ID | | | SW1 | SW2 | SW3 | SW4 | |--------------------------------|--------|------|--------------|--------------|--------------|--------------| | Sample Matrix | | | Water | Water | Water | Water | | Eurofins Sample No. | | | S21-Jn12561 | S21-Jn12562 | S21-Jn12563 | S21-Jn12564 | | Date Sampled | | | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | | Test/Reference | LOR | Unit | | | | | | | | 1 | | | | | | Hardness mg equivalent CaCO3/L | 1 | mg/L | 63 | 62 | 88 | 54 | | Heavy Metals | | | | | | | | Arsenic | 0.001 | mg/L | < 0.001 | 0.001 | 0.001 | 0.001 | | Arsenic (filtered) | 0.001 | mg/L | < 0.001 | < 0.001 | < 0.001 | 0.001 | | Barium | 0.02 | mg/L | 0.02 | < 0.02 | 0.03 | < 0.02 | | Barium (filtered) | 0.02 | mg/L | 0.02 | 0.02 | 0.03 | 0.02 | | Cadmium | 0.0002 | mg/L | 0.0019 | 0.0019 | 0.011 | 0.0018 | | Cadmium (filtered) | 0.0002 | mg/L | 0.0019 | 0.0020 | 0.012 | 0.0021 | | Chromium | 0.001 | mg/L | < 0.001 | 0.002 | 0.003 | < 0.001 | | Chromium (filtered) | 0.001 | mg/L | < 0.001 | < 0.001 | < 0.001 | < 0.001 | | Cobalt | 0.001 | mg/L | 0.003 | 0.003 | 0.008 | 0.003 | | Cobalt (filtered) | 0.001 | mg/L | 0.003 | 0.003 | 0.008 | 0.003 | | Copper | 0.001 | mg/L | 0.012 | 0.016 | 0.15 | 0.016 | | Copper (filtered) | 0.001 | mg/L | 0.008 | 0.008 | 0.11 | 0.010 | | Iron | 0.05 | mg/L | 2.1 | 3.9 | 3.0 | 3.8 | | Iron (filtered) | 0.05 | mg/L | 0.63 | 0.87 | 0.82 | 1.7 | | Lead | 0.001 | mg/L | 0.019 | 0.028 | 0.087 | 0.028 | | Lead (filtered) | 0.001 | mg/L | 0.007 | 0.005 | 0.018 | 0.006 | | Manganese | 0.005 | mg/L | 0.31 | 0.32 | 0.65 | 0.31 | | Manganese (filtered) | 0.005 | mg/L | 0.30 | 0.35 | 0.71 | 0.33 | | Mercury | 0.0001 | mg/L | < 0.0001 | < 0.0001 | < 0.0001 | < 0.0001 | | Mercury (filtered) | 0.0001 | mg/L | < 0.0001 | < 0.0001 | < 0.0001 | < 0.0001 | | Molybdenum | 0.005 | mg/L | < 0.005 | < 0.005 | < 0.005 | < 0.005 | | Molybdenum (filtered) | 0.005 | mg/L | < 0.005 | < 0.005 | < 0.005 | < 0.005 | | Nickel | 0.001 | mg/L | 0.005 | 0.005 | 0.008 | 0.003 | | Nickel (filtered) | 0.001 | mg/L | 0.004 | 0.006 | 0.008 | 0.003 | | Selenium | 0.001 | mg/L | 0.001 | < 0.001 | 0.002 | < 0.001 | | Selenium (filtered) | 0.001 | mg/L | < 0.001 | < 0.001 | < 0.001 | < 0.001 | | Titanium | 0.005 | mg/L | < 0.005 | < 0.005 | 0.010 | 0.006 | | Titanium (filtered) | 0.005 | mg/L | < 0.005 | < 0.005 | < 0.005 | < 0.005 | | Zinc | 0.005 | mg/L | 2.3 | 2.2 | 8.0 | 2.1 | | Zinc (filtered) | 0.005 | mg/L | 1.6 | 1.8 | 6.8 | 1.8 | | Alkali Metals | | | | | | | | Calcium | 0.5 | mg/L | 11 | 11 | 15 | 9.2 | | Magnesium | 0.5 | mg/L | 8.8 | 8.6 | 12 | 7.6 | | Client Sample ID | | | SW5 | SW6 | SW7 | SW8 | |--------------------------------|--------|------|--------------|--------------|--------------|--------------| | Sample Matrix | | | Water | Water | Water | Water | | Eurofins Sample No. | | | S21-Jn12565 | S21-Jn12566 | S21-Jn12567 | S21-Jn12568 | | Date Sampled | | | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | | Test/Reference | LOR | Unit | | | | | | | + | • | | | | | | Hardness mg equivalent CaCO3/L | 1 | mg/L | 1400 | 33 | 32 | 300 | | Heavy Metals | | | | | | | | Arsenic | 0.001 | mg/L | 0.010 | 0.002 | 0.002 | 0.003 | | Arsenic (filtered) | 0.001 | mg/L | 0.008 | < 0.001 | < 0.001 | 0.001 | | Barium | 0.02 | mg/L | < 0.02 | 0.03 | 0.03 | 0.02 | | Barium (filtered) | 0.02 | mg/L | < 0.02 | 0.02 | 0.02 | 0.03 | | Cadmium | 0.0002 | mg/L | 0.10 | 0.0029 | 0.0030 | 0.11 | | Cadmium (filtered) | 0.0002 | mg/L | 0.11 | 0.0030 | 0.0032 | 0.12 | | Chromium | 0.001 | mg/L | 0.002 | 0.003 | 0.003 | 0.003 | | Chromium (filtered) | 0.001 | mg/L | < 0.001 | < 0.001 | < 0.001 | 0.002 | | Cobalt | 0.001 | mg/L | 0.086 | 0.001 | 0.002 | 0.037 | | Cobalt (filtered) | 0.001 | mg/L | 0.097 | 0.001 | 0.001 | 0.041 | | Copper | 0.001 | mg/L | 0.33 | 0.063 | 0.060 | 1.7 | | Copper (filtered) | 0.001 | mg/L | 0.36 | 0.045 | 0.046 | 1.9 | | Iron | 0.05 | mg/L | 150 | 2.2 | 2.0 | 15 | | Iron (filtered) | 0.05 | mg/L | 190 | 0.65 | 0.63 | 11 | | Lead | 0.001 | mg/L | 1.2 | 0.29 | 0.30 | 1.2 | | Lead (filtered) | 0.001 | mg/L | 1.3 | 0.11 | 0.13 | 1.2 | | Manganese | 0.005 | mg/L | 10 | 0.042 | 0.042 | 2.5 | | Manganese (filtered) | 0.005 | mg/L | 12 | 0.033 | 0.034 | 3.0 | | Mercury | 0.0001 | mg/L | < 0.0001 | < 0.0001 | < 0.0001 | < 0.0001 | | Mercury (filtered) | 0.0001 | mg/L | < 0.0001 | < 0.0001 | < 0.0001 | < 0.0001 | | Molybdenum | 0.005 | mg/L | < 0.005 | < 0.005 | < 0.005 | < 0.005 | | Molybdenum (filtered) | 0.005 | mg/L | < 0.005 | < 0.005 | < 0.005 | < 0.005 | | Nickel | 0.001 | mg/L | 0.063 | 0.004 | 0.003 | 0.034 | | Nickel (filtered) | 0.001 | mg/L | 0.072 | 0.003 | 0.003 | 0.036 | | Selenium | 0.001 | mg/L | 0.011 | 0.002 | 0.001 | 0.007 | | Selenium (filtered) | 0.001 | mg/L | 0.003 | < 0.001 | < 0.001 | 0.002 | | Titanium | 0.005 | mg/L | < 0.005 | 0.053 | 0.042 | < 0.005 | | Titanium (filtered) | 0.005 | mg/L | < 0.005 | 0.012 | 0.011 | < 0.005 | | Zinc | 0.005 | mg/L | 120 | 1.4 | 1.4 | 67 | | Zinc (filtered) | 0.005 | mg/L | 140 | 1.1 | 1.2 | 78 | | Alkali Metals | | | | | | | | Calcium | 0.5 | mg/L | 280 | 4.2 | 4.2 | 55 | | Magnesium | 0.5 | mg/L | 170 | 5.5 | 5.3 | 40 | | Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference | LOR | Unit | SW9
Water
S21-Jn12569
Jun 03, 2021 | SW10
Water
S21-Jn12570
Jun 03, 2021 | SW11
Water
S21-Jn12571
Jun 03, 2021 | SW12
Water
S21-Jn12572
Jun 03, 2021 | |--|-------|------|---|--|--|--| | Hardness mg equivalent CaCO3/L | 1 | mg/L | 330 | 96 | 21 | 930 | | Heavy Metals | | | | | | | | Arsenic | 0.001 | mg/L | 0.002 | 0.001 | < 0.001 | 0.003 | | Arsenic (filtered) | 0.001 | mg/L | 0.002 | < 0.001 | 0.001 | 0.002 | | Barium | 0.02 | mg/L | 0.03 | < 0.02 | < 0.02 | < 0.02 | | Barium (filtered) | 0.02 | mg/L | 0.03 | < 0.02 | < 0.02 | < 0.02 | | Client Sample ID | | | SW9 | SW10 | SW11 | SW12 | |-----------------------|--------|------|--------------|--------------|--------------|--------------| | Sample Matrix | | | Water | Water | Water | Water | | Eurofins Sample No. | | | S21-Jn12569 | S21-Jn12570 | S21-Jn12571 | S21-Jn12572 | | Date Sampled | | | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | | Test/Reference | LOR | Unit | | | | | | Heavy Metals | | • | | | | | | Cadmium | 0.0002 | mg/L | 0.16 | 0.0069 | 0.0003 | 0.024 | | Cadmium (filtered) | 0.0002 | mg/L | 0.18 | 0.0072 | 0.0003 | 0.025 | | Chromium | 0.001 | mg/L | 0.004 | 0.001 | 0.001 | 0.004 | | Chromium (filtered) | 0.001 | mg/L | 0.004 | < 0.001 | < 0.001 | 0.004 | | Cobalt | 0.001 | mg/L | 0.040 | 0.016 | < 0.001 | 0.13 | | Cobalt (filtered) | 0.001 | mg/L | 0.043 | 0.016 | < 0.001 | 0.14 | | Copper | 0.001 | mg/L | 2.6 | 0.19 | 0.006 | 0.33 | | Copper (filtered) | 0.001 | mg/L | 2.7 | 0.18 | 0.005 | 0.35 | | Iron | 0.05 | mg/L | 7.5 | 3.8 | 0.84 | 91 | | Iron (filtered) | 0.05 | mg/L | 8.3 | 1.2 | 0.43 | 99 | | Lead | 0.001 | mg/L | 1.3 | 0.11 | 0.008 | 0.024 | | Lead (filtered) | 0.001 | mg/L | 1.4 | 0.069 | 0.004 | 0.025 | | Manganese | 0.005 | mg/L | 3.0 | 1.3 | 0.081 | 14 | | Manganese (filtered) | 0.005 | mg/L | 3.3 | 1.3 | 0.074 | 15 | | Mercury | 0.0001 | mg/L | < 0.0001 | < 0.0001 | < 0.0001 | < 0.0001 | | Mercury (filtered) | 0.0001 | mg/L | < 0.0001 | < 0.0001 | < 0.0001 | < 0.0001 | | Molybdenum | 0.005 | mg/L | < 0.005 | < 0.005 | < 0.005 | < 0.005 | | Molybdenum (filtered) | 0.005 | mg/L | < 0.005 | < 0.005 | < 0.005 | < 0.005 | | Nickel | 0.001 | mg/L | 0.044 | 0.006 | 0.002 | 0.050 | | Nickel (filtered) | 0.001 | mg/L | 0.047 | 0.007 | 0.002 | 0.053 | | Selenium | 0.001 | mg/L | 0.009 | 0.004 | 0.001 | 0.016 | | Selenium (filtered) | 0.001 | mg/L | 0.002 | < 0.001 | < 0.001 | 0.002 | | Titanium | 0.005 | mg/L | < 0.005 | < 0.005 | 0.009 | < 0.005 | | Titanium (filtered) | 0.005 | mg/L | < 0.005 | < 0.005 | < 0.005 | < 0.005 | | Zinc | 0.005 | mg/L | 95 | 8.2 | 0.39 | 67 | | Zinc (filtered) | 0.005 | mg/L | 110 | 6.8 | 0.32 | 75 | | Alkali Metals | | | | | | | | Calcium | 0.5 | mg/L | 72 | 13 | 2.9 | 100 | | Magnesium | 0.5 | mg/L | 36 | 15 | 3.3 | 160 | | Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference | LOR | Unit | SW13
Water
S21-Jn12573
Jun 03, 2021 | SW14
Water
S21-Jn12574
Jun 03, 2021 | SW15
Water
S21-Jn12575
Jun 03, 2021 | QA35
Water
S21-Jn12592
Jun 03, 2021 | |--|--------|------|--|--|--|--| | Hardness mg equivalent CaCO3/L | 1 | mg/L | 47 | 17 | 18 | - | | Heavy Metals | | | | | | | | Arsenic | 0.001 | mg/L | 0.001 | < 0.001 | < 0.001 | 0.011 | | Arsenic (filtered) | 0.001 | mg/L | < 0.001 | < 0.001 | < 0.001 | 0.008 | | Barium | 0.02 | mg/L | 0.03 | < 0.02 | < 0.02 | < 0.02 | | Barium (filtered) | 0.02
 mg/L | 0.03 | < 0.02 | < 0.02 | < 0.02 | | Cadmium | 0.0002 | mg/L | 0.0083 | < 0.0002 | < 0.0002 | 0.11 | | Cadmium (filtered) | 0.0002 | mg/L | 0.0090 | < 0.0002 | < 0.0002 | 0.11 | | Chromium | 0.001 | mg/L | 0.001 | < 0.001 | < 0.001 | 0.002 | | Chromium (filtered) | 0.001 | mg/L | < 0.001 | < 0.001 | < 0.001 | < 0.001 | | Cobalt | 0.001 | mg/L | 0.014 | < 0.001 | < 0.001 | 0.096 | | Cobalt (filtered) | 0.001 | mg/L | 0.016 | < 0.001 | < 0.001 | 0.098 | | Client Sample ID | | | SW13 | SW14 | SW15 | QA35 | |-----------------------|--------|------|--------------|--------------|--------------|--------------| | Sample Matrix | | | Water | Water | Water | Water | | Eurofins Sample No. | | | S21-Jn12573 | S21-Jn12574 | S21-Jn12575 | S21-Jn12592 | | Date Sampled | | | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | | Test/Reference | LOR | Unit | | | | | | Heavy Metals | | | | | | | | Copper | 0.001 | mg/L | 0.37 | 0.002 | 0.002 | 0.37 | | Copper (filtered) | 0.001 | mg/L | 0.37 | 0.003 | 0.003 | 0.37 | | Iron | 0.05 | mg/L | 0.65 | 0.69 | 0.69 | 170 | | Iron (filtered) | 0.05 | mg/L | 0.22 | 0.52 | 0.40 | 190 | | Lead | 0.001 | mg/L | 0.15 | 0.005 | 0.004 | 1.3 | | Lead (filtered) | 0.001 | mg/L | 0.14 | 0.003 | 0.002 | 1.4 | | Manganese | 0.005 | mg/L | 0.35 | 0.024 | 0.027 | 11 | | Manganese (filtered) | 0.005 | mg/L | 0.38 | 0.010 | 0.012 | 12 | | Mercury | 0.0001 | mg/L | < 0.0001 | < 0.0001 | < 0.0001 | < 0.0001 | | Mercury (filtered) | 0.0001 | mg/L | < 0.0001 | < 0.0001 | < 0.0001 | < 0.0001 | | Molybdenum | 0.005 | mg/L | < 0.005 | < 0.005 | < 0.005 | < 0.005 | | Molybdenum (filtered) | 0.005 | mg/L | < 0.005 | < 0.005 | < 0.005 | < 0.005 | | Nickel | 0.001 | mg/L | 0.003 | 0.002 | 0.003 | 0.071 | | Nickel (filtered) | 0.001 | mg/L | 0.003 | 0.002 | 0.002 | 0.072 | | Selenium | 0.001 | mg/L | 0.003 | < 0.001 | < 0.001 | 0.013 | | Selenium (filtered) | 0.001 | mg/L | < 0.001 | < 0.001 | < 0.001 | 0.002 | | Titanium | 0.005 | mg/L | < 0.005 | < 0.005 | < 0.005 | < 0.005 | | Titanium (filtered) | 0.005 | mg/L | < 0.005 | < 0.005 | < 0.005 | < 0.005 | | Zinc | 0.005 | mg/L | 4.3 | 0.041 | 0.042 | 130 | | Zinc (filtered) | 0.005 | mg/L | 3.7 | 0.058 | 0.049 | 140 | | Alkali Metals | | | | | | | | Calcium | 0.5 | mg/L | 6.3 | 2.4 | 2.6 | - | | Magnesium | 0.5 | mg/L | 7.6 | 2.8 | 2.8 | - | Page 4 of 19 Report Number: 800910-W # Sample History Where samples are submitted/analysed over several days, the last date of extraction is reported. If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time. | Description Hardness Set | Testing Site | Extracted | Holding Time | |--|--------------|--------------|--------------| | Hardness mg equivalent CaCO3/L | Sydney | Jun 11, 2021 | 28 Days | | - Method: E020.1 Hardness in water | | | | | Alkali Metals | Sydney | Jun 11, 2021 | 180 Days | | - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS | | | | | Metals M8 | Sydney | Jun 11, 2021 | 180 Days | | - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS | | | | | Metals M8 filtered | Sydney | Jun 11, 2021 | 28 Days | | - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS | | | | | Heavy Metals | Sydney | Jun 11, 2021 | 180 Days | | - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS | | | | | Heavy Metals (filtered) | Sydney | Jun 11, 2021 | 180 Days | | - Method: LTM-MET-3040 Metals in Waters. Soils & Sediments by ICP-MS | | | | eurofins eurofins Melbourne **Environment Testing** 6 Monterey Road Dandenong South VIC 3175 1 Phone: +61 3 8564 5000 L NATA # 1261 **Building F** Sydney Unit F3, Building 16 Mars Road 1/21 Smallwood Place Murarrie QLD 4172 5 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 **New Zealand** Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Box 60 Wickham 2293 Phone: +612 4968 8448 NATA # 1261 Site # 25079 318001193 800910 > Order No.: Report #: Perth 46-48 Banksia Road Welshool WA 6106 Phone: +618 9251 9600 NATA # 1261 Site # 23736 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Site # 1254 & 14271 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 Received: Due: **Priority:** Jun 4, 2021 5:45 PM Stephen Maxwell Jun 11, 2021 5 Day Contact Name: Eurofins Analytical Services Manager: Andrew Black Moisture Set Metals M8 Titanium Iron Selenium Molybdenum (filtered) Molybdenum Manganese (filtered) Manganese Iron (filtered) HOLD Cobalt (filtered) Barium Cobalt Barium (filtered) Sample Detail × × × × × × × × × × × × × × × × × × Melbourne Laboratory - NATA Site # 1254 & 14271 Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217 Mayfield Laboratory - NATA Site # 25079 **External Laboratory** Sample ID å Perth Laboratory - NATA Site # 23736 Selenium (filtered) Titanium (filtered) Metals M8 filtered Hardness Set Phone: CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: web: www.eurofins.com.au email: EnviroSales@eurofins.com Ramboll Australia Pty Ltd Level 3/100 Pacific Highway Company Name: Address: North Sydney NSW 2060 Page 6 of 19 × Water Water Water Water Water SW5 SW6 15 9 SW4 Jun 03, 2021 Jun 03, 2021 Jun 03, 2021 SW8 SW9 SW7 × × × × × × × × × \times \times \times \times × S21-Jn12561 LAB ID Matrix Sampling Time Sample Date × × × × × × × × S21-Jn12562 S21-Jn12563 S21-Jn12564 S21-Jn12565 S21-Jn12566 S21-Jn12567 Water Water Water Jun 03, 2021 SW2 SW3 SW1 Jun 03, 2027 Water × × × × × × S21-Jn12568 S21-Jn12569 × × × × Melbourne Australia 6 Monterey Road Dandenong South VIC 3175 16 Phone: +61 3 8564 5000 LANTA # 1261 Site # 1254 & 14271 ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +617 3902 4600 NATA # 1261 Site # 20794 318001193 Order No.: Report #: Phone: Fax: CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Box 60 Wickham 2293 Phone: +61'2 4968 8448 NATA # 1261 Site # 25079 Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** Received: Priority: Due: Contact Name: 5 Day Jun 4, 2021 5:45 PM Jun 11, 2021 Stephen Maxwell | Moisture Set | | × | | | | | | | | | | | × | × | × | × | × | |-----------------------|---|---------------------------------------|---|--------------------------------------|---|----------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | Hardness Set | | × | | | | | X | X | X | X | X | X | | | | | | | Metals M8 filtered | | × | | | | | × | × | × | × | × | × | | | | | | | Metals M8 | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | Titanium (filtered) | | × | | | | | × | × | × | × | × | × | | | | | | | Titanium | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | Selenium (filtered) | | × | | | | | × | × | × | × | × | × | | | | | | | Selenium | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | Molybdenum (filtered) | | × | | | | | × | × | × | × | × | × | | | | | | | Molybdenum | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | Manganese (filtered) | | × | | | | | × | × | × | × | × | × | | | | | | | Manganese | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | Iron (filtered) | | × | | | | | × | × | × | × | × | × | | | | | | | Iron | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | HOLD | | × | | | | | | | | | | | | | | | | | Cobalt (filtered) | | × | | | | | × | × | × | × | × | × | | | | | | | Cobalt | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | Barium (filtered) | | × | | | | | × | × | × | × | × | × | | | | | | | Barium | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | | | | | | | | S21-Jn12570 | S21-Jn12571 | S21-Jn12572 | S21-Jn12573 | S21-Jn12574 | S21-Jn12575 | S21-Jn12576 | S21-Jn12577 | S21-Jn12578 | S21-Jn12579 | S21-Jn12580 | | | 171 | | | | | | Water | Water | Water | Water | Water | Water | Soil | Soil | Soil | Soil | Soil | | Sample Detail | # 1254 & 142 | 18217 | 20794 | 736 | 25079 | | | | | | | | | | | | | | S | ry - NATA Site | NATA Site #1 | / - NATA Site # | IATA Site # 237 | - NATA Site # | | Jun 03, 2021 | | Melbourne Laboratory - NATA Site # 1254 & 14271 | Sydney Laboratory - NATA Site # 18217 | Brisbane Laboratory - NATA Site # 20794 | Perth Laboratory - NATA Site # 23736 | Mayfield Laboratory - NATA Site # 25079 | External Laboratory | SW10 | SW11 | SW12 | SW13 | SW14 | SW15 | SED1 | SED2 | SED3 | SED4 | SED5 | | | Me | Syc | Bri | Per | May | Ext | 10 | 1 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 Melbourne Australia 6 Monterey Road Dandenong South VIC 3175 16 Phone : +61 3
8564 5000 Lt NATA # 1261 Site # 1254 & 14271 N Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +617 3902 4600 NATA # 1261 Site # 20794 318001193 800910 Order No.: CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: Report #: Phone: Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Box 60 Wickham 2293 Phone: +61'2 4968 8448 NATA # 1261 Site # 25079 Contact Name: Priority: Due: Jun 11, 2021 5 Day Stephen Maxwell Jun 4, 2021 5:45 PM Received: | er : Andrev | | |-------------|------------| | เหลาสฎเ | Moisture | | ces | Hardne | | Servi | Metals I | | ııcaı | Metals I | | Anaıy | Titaniun | | SIIIIS | Titaniun | | Eur | Seleniu | | | Seleniu | | | Molybde | | | Molybde | | | Mangar | | | Mangar | | | Iron (filt | | | Iron | | | HOLD | | | Cobalt (| | | Cobalt | | | Barium | | | Barium | | | - Daniani | Moisture Set | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | |-----------------------|---|---------------------------------------|---|--------------------------------------|---|---------------------|-------------------|-------------------|-------------------|-------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-------------------| | Hardness Set | | × | | | | | | | | | | | | | | | | | Metals M8 filtered | | × | | | | | | | | | | | | | | | | | Metals M8 | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | Titanium (filtered) | | × | | | | | | | | | | | | | | | | | Titanium | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | Selenium (filtered) | | × | | | | | | | | | | | | | | | | | Selenium | | × | | | | | X | X | X | × | X | X | X | X | X | × | × | | Molybdenum (filtered) | | × | | | | | | | | | | | | | | | | | Molybdenum | | × | | | | | X | X | X | × | X | X | × | X | X | × | × | | Manganese (filtered) | | × | | | | | | | | | | | | | | | | | Manganese | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | Iron (filtered) | | × | | | | | | | | | | | | | | | | | Iron | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | HOLD | | × | | | | | | | | | | | | | | | | | Cobalt (filtered) | | × | | | | | | | | | | | | | | | | | Cobalt | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | Barium (filtered) | | × | | | | | | | | | | | | | | | | | Barium | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | | | | | | | | S21-Jn12581 | S21-Jn12582 | S21-Jn12583 | S21-Jn12584 | S21-Jn12585 | S21-Jn12586 | S21-Jn12587 | S21-Jn12588 | S21-Jn12589 | S21-Jn12590 | S21-Jn12591 | | ai | 14271 | | | | | | Soil | Sample Detail | Melbourne Laboratory - NATA Site # 1254 & 14271 | Sydney Laboratory - NATA Site # 18217 | Brisbane Laboratory - NATA Site # 20794 | Perth Laboratory - NATA Site # 23736 | Mayfield Laboratory - NATA Site # 25079 | External Laboratory | SED6 Jun 03, 2021 | SED7 Jun 03, 2021 | SED8 Jun 03, 2021 | SED9 Jun 03, 2021 | SED10 Jun 03, 2021 | SED11 Jun 03, 2021 | SED12 Jun 03, 2021 | SED13 Jun 03, 2021 | SED14 Jun 03, 2021 | SED15 Jun 03, 2021 | QA35 Jun 03, 2021 | | | nogle | dney | isban | rth L | yfiel | terna | SE | | | | | | | | | | | | | Me | Sy | Ä | Pe | Ma | Ä | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | Melbourne Australia 6 Monterey Road Dandenong South VIC 3175 1Phone: +61 3 8564 5000 NATA # 1261 P Site # 1254 & 14271 ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +612 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarine QLD 4172 S Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 318001193 02 9954 8118 02 9954 8150 800910 Order No.: Report #: Phone: Fax: CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Box 60 Wrickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Received: Due: Jun 4, 2021 5:45 PM Contact Name: Priority: Stephen Maxwell 5 Day Jun 11, 2021 Eurofins Analytical Services Manager: Andrew Black | Moisture Set | | × | | | | | | | | | | _ | |-----------------------|---|---------------------------------------|---|--------------------------------------|---|----------------------------|--------------|--------------|--------------|--------------|--------------|---| | Hardness Set | | × | | | | | | | | | | - | | Metals M8 filtered | | × | | | | | × | | | | | - | | Metals M8 | | × | | | | | × | | | | | - | | Titanium (filtered) | | × | | | | | × | | | | | | | Titanium | | × | | | | | × | | | | | - | | Selenium (filtered) | | × | | | | | × | | | | | | | Selenium | | × | | | | | × | | | | | | | Molybdenum (filtered) | | × | | | | | × | | | | | | | Molybdenum | | × | | | | | × | | | | | | | Manganese (filtered) | | × | | | | | × | | | | | | | Manganese | | × | | | | | × | | | | | | | Iron (filtered) | | × | | | | | × | | | | | | | Iron | | × | | | | | × | | | | | | | HOLD | | × | | | | | | × | × | × | × | | | Cobalt (filtered) | | × | | | | | × | | | | | L | | Cobalt | | × | | | | | × | | | | | L | | Barium (filtered) | | × | | | | | × | | | | | L | | Barium | | × | | | | | × | | | | | L | | | | | | | | | S21-Jn12592 | S21-Jn12593 | S21-Jn12594 | S21-Jn12595 | S21-Jn12596 | | | | 171 | | | | | | Water | Water | Water | Water | Water | | | Sample Detail | # 1254 & 142 | 8217 | 20794 | 736 | 25079 | | | | | | | | | S _O | ry - NATA Site | NATA Site # 1 | - NATA Site # | ATA Site # 237 | - NATA Site # | | Jun 03, 2021 | | | | Melbourne Laboratory - NATA Site # 1254 & 14271 | Sydney Laboratory - NATA Site # 18217 | Brisbane Laboratory - NATA Site # 20794 | Perth Laboratory - NATA Site # 23736 | Mayfield Laboratory - NATA Site # 25079 | External Laboratory | QA35 | R01 | R02 | R03 | R04 | | | | Melbo | Sydne | Brisb | Perth | Mayfi | Exteri | 32 (| 33 F | 34 F | 35 F | 36 F | | × × × × × × > S21-Jn12599 S21-Jn12600 S21-Jn12598 Soil Soil Soil Soil > Jun 03, 2021 Jun 03, 2021 Jun 03, 2021 Soil Jun 03, 2021 Jun 03, 2021 > QA02 QA03 QA04 38 39 40 QA01 37 S21-Jn12597 S21-Jn12602 Soil Jun 03, 2021 QA06 QA05 S21-Jn12601 ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 Australia 6 Monterey Road Dandenong South VIC 3175 16 Phone : +61 3 8564 5000 Lt NATA # 1261 Site # 1254 & 14271 N Melbourne Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +617 3902 4600 NATA # 1261 Site # 20794 318001193 Order No.: Report #: > Phone: Fax: > > CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Box 60 Wickham 2293 Phone: +61'2 4968 8448 NATA # 1261 Site # 25079 Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** Received: Priority: Due: Jun 4, 2021 5:45 PM Jun 11, 2021 Contact Name: 5 Day Stephen Maxwell | Black | | |-----------|--| | Andrew | | | :- | | | Manager | | | Services | | | ytical \$ | | | Anal | | | urofins | | | П | | | | | | Moisture Set | | × | | | | | | | | | | | | | | | | |-----------------------|---|---------------------------------------|---|--------------------------------------|---|----------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | Hardness Set | | × | | | | | | | | | | | | | | | | | Metals M8 filtered | | × | | | | | | | | | | | | | | | | | Metals M8 | | × | | | | | | | | | | | | | | | | | Titanium (filtered) | | × | | | | | | | | | | | | | | | | | Titanium | | × | | | | | | | | | | | | | | | | | Selenium (filtered) | | × | | | | | | | | | | | | | | | | | Selenium | | × | | | | | | | | | | | | | | | | | Molybdenum (filtered) | | × | | | | | | | | | | | | | | | | | Molybdenum | | × | | | | | | | | | | | | | | | | | Manganese (filtered) | | × | | | | | | | | | | | | | | | | | Manganese | | × | | | | | | | | | | | | | | | | | Iron (filtered) | | × | | | | | | | | | | | | | | | | | Iron | | × | | | | | | | | | | | | | | | | | HOLD | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | Cobalt (filtered) | | × | | | | | | | | | | | | | | | | | Cobalt | | × | | | | | | | | | | | | | | | | | Barium (filtered) | | × | | | | | | | | | | | | | | | | | Barium | | × | S21-Jn12603 | S21-Jn12604 |
S21-Jn12605 | S21-Jn12606 | S21-Jn12607 | S21-Jn12608 | S21-Jn12609 | S21-Jn12610 | S21-Jn12611 | S21-Jn12612 | S21-Jn12613 | | _ | 4271 | | | | | | Soil | Sample Detail | # 1254 & 1 | 18217 | 20794 | 736 | 25079 | | | | | | | | | | | | | | Ö | ory - NATA Site | - NATA Site # 1 | y - NATA Site # | NATA Site # 237 | / - NATA Site # | , | Jun 03, 2021 | | Melbourne Laboratory - NATA Site # 1254 & 14271 | Sydney Laboratory - NATA Site # 18217 | Brisbane Laboratory - NATA Site # 20794 | Perth Laboratory - NATA Site # 23736 | Mayfield Laboratory - NATA Site # 25079 | External Laboratory | 43 QA07 | 44 QA08 | 45 QA09 | 46 QA10 | 47 QA11 | 48 QA12 | 49 QA13 | 50 QA14 | 51 QA15 | 52 QA16 | 53 QA17 | | | _ | - | _ | _ | _ | _ | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 47 | ~/ | | 47 | ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 Australia Melbourne 6 Monterey Road U Dandenong South VIC 3175 16 Phone : +61 3 8564 5000 L NATA # 1261 PIS Site # 1254 & 14271 N Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +617 3902 4600 NATA # 1261 Site # 20794 318001193 800910 02 9954 8118 02 9954 8150 Order No.: Report #: Phone: Fax: CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61'2 4968 8448 NATA # 1261 Site # 25079 Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** Received: Priority: Due: Contact Name: 5 Day Jun 4, 2021 5:45 PM Jun 11, 2021 Stephen Maxwell | Black | |----------| | Andrew | | :- | | Manager | | Services | | ytical | | Anal | | ofins | | Eur | | Moisture Set | | × | | | | | | | | | | | | | | | | |-----------------------|---|---------------------------------------|---|--------------------------------------|---|----------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | Hardness Set | | × | | | | | | | | | | | | | | | | | Metals M8 filtered | | × | | | | | | | | | | | | | | | | | Metals M8 | | × | | | | | | | | | | | | | | | | | Titanium (filtered) | | × | | | | | | | | | | | | | | | | | Titanium | | × | | | | | | | | | | | | | | | | | Selenium (filtered) | | × | | | | | | | | | | | | | | | | | Selenium | | × | | | | | | | | | | | | | | | | | Molybdenum (filtered) | | × | | | | | | | | | | | | | | | | | Molybdenum | | × | | | | | | | | | | | | | | | | | Manganese (filtered) | | × | | | | | | | | | | | | | | | | | Manganese | | × | | | | | | | | | | | | | | | | | Iron (filtered) | | × | | | | | | | | | | | | | | | | | Iron | | × | | | | | | | | | | | | | | | | | HOLD | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | Cobalt (filtered) | | × | | | | | | | | | | | | | | | | | Cobalt | | × | | | | | | | | | | | | | | | | | Barium (filtered) | | × | | | | | | | | | | | | | | | | | Barium | | × | S21-Jn12614 | S21-Jn12615 | S21-Jn12616 | S21-Jn12617 | S21-Jn12618 | S21-Jn12619 | S21-Jn12620 | S21-Jn12621 | S21-Jn12622 | S21-Jn12623 | S21-Jn12624 | | Detail | 4 & 14271 | | 4 | | | | Soil | Sample Detail | Melbourne Laboratory - NATA Site # 1254 & 14271 | Sydney Laboratory - NATA Site # 18217 | Brisbane Laboratory - NATA Site # 20794 | Perth Laboratory - NATA Site # 23736 | Mayfield Laboratory - NATA Site # 25079 | ory | Jun 03, 2021 | | felbourne Labor | ydney Laborato | risbane Labora | erth Laboratory | layfield Laborat | External Laboratory | 54 QA18 | 55 QA19 | 56 QA20 | 57 QA21 | 58 QA22 | 59 QA23 | 60 QA24 | 61 QA25 | 62 QA26 | 63 QA27 | 64 QA28 | | | 2 | S | Ш | п | 2 | Ш | 2 | 2 | 2 | 2 | 2 | 2 | 9 | 9 | 9 | 9 | 9 | 6 Monterey Road Dandenong South VIC 3175 1 Phone: +61 3 8564 5000 L NATA # 1261 Melbourne Australia Site # 1254 & 14271 ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +612 9900 8400 NATA# 1261 Site# 18217 Brisbane 1/21 Smallwood Place 1/21 Smallwood Place Murarie QLD 4172 5 Phone: +617 3902 4600 NATA# 1261 Site # 20794 318001193 800910 Order No.: Report #: Phone: CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: Perth 46-48 Banksia Road Welshool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Box 60 Wrickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** Received: Due: Contact Name: Priority: Jun 4, 2021 5:45 PM Stephen Maxwell 5 Day Jun 11, 2021 Eurofins Analytical Services Manager: Andrew Black Moisture Set Iron Metals M8 filtered Metals M8 Titanium (filtered) Titanium Selenium (filtered) Selenium Molybdenum (filtered) Molybdenum Manganese (filtered) Manganese Iron (filtered) HOLD Cobalt (filtered) Cobalt Barium (filtered) Barium Sample Detail Hardness Set × × × × × × × × × × × × × × × × Melbourne Laboratory - NATA Site # 1254 & 14271 Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217 Mayfield Laboratory - NATA Site # 25079 **External Laboratory** QA29 QA30 65 99 29 69 70 7 QA32 QA33 **QA34** QA31 Perth Laboratory - NATA Site # 23736 × × × × × × × × × × S21-Jn12629 S21-Jn12630 S21-Jn12631 S21-Jn12632 S21-Jn12633 × S21-Jn12625 S21-Jn12626 S21-Jn12627 S21-Jn12628 > Soil Soil Soil Soil Soil Soil Jun 03, 2021 S21-Jn12635 S21-Jn12634 Soil Soil Jun 03, 2021 QA40 QA41 Jun 03, 2021 Soil Soil Jun 03, 2021 QA38 QA39 QA37 Jun 03, 2021 Jun 03, 2021 | 9 | |----| | 4_ | | 0 | | 7 | | g | | ă | | щ | ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 Australia 6 Monterey Road U Dandenong South VIC 3175 16 Phone : +61 3 8564 5000 L NATA # 1261 PIS Site # 1254 & 14271 N Melbourne Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +617 3902 4600 NATA # 1261 Site # 20794 318001193 800910 Order No.: Report #: Phone: Fax: CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Box 60 Wickham 2293 Phone: +61'2 4968 8448 NATA # 1261 Site # 25079 Received: Due: Priority: Jun 4, 2021 5:45 PM Contact Name: Jun 11, 2021 5 Day Stephen Maxwell Eurofins Analytical Services Manager: Andrew Black | Moisture Set | | × | | | | | | | | | | 16 | |-----------------------|---|---------------------------------------|---|--------------------------------------|---|----------------------------|--------------|--------------|--------------|--------------|--------------|-------------| | Hardness Set | | × | | | | | | | | | | 15 | | Metals M8 filtered | | × | | | | | | | | | | 16 | | Metals M8 | | × | | | | | | | | | | 32 | | Titanium (filtered) | | × | | | | | | | | | | 16 | | Titanium | | × | | | | | | | | | | 32 | | Selenium (filtered) | | × | | | | | | | | | | 16 | | Selenium | | × | | | | | | | | | | 32 | | Molybdenum (filtered) | | × | | | | | | | | | | 16 | | Molybdenum | | × | | | | | | | | | | 32 | | Manganese (filtered) | | × | | | | | | | | | | 16 | | Manganese | | × | | | | | | | | | | 32 | | Iron (filtered) | | × | | | | | | | | | | 16 | | Iron | | × | | | | | | | | | | 32 | | HOLD | | × | | | | | × | × | × | × | × | 48 | | Cobalt (filtered) | | × | | | | | | | | | | 16 | | Cobalt | | × | | | | | | | | | | 32 | | Barium (filtered) | | × | | | | | | | | | | 16 | | Barium | | × | | | | | | | | | | 32 | | | | | | | | | S21-Jn12636 | S21-Jn12637 | S21-Jn12638 | S21-Jn12639 | S21-Jn12640 | | | Sample Detail | 54 & 14271 | | 94 | | 6, | | Soil | Soil | Soil | Soil | Soil | | | Sample | Melbourne Laboratory - NATA Site # 1254 & 14271 | Sydney Laboratory - NATA Site # 18217 | Brisbane Laboratory - NATA Site # 20794 | Perth Laboratory - NATA Site # 23736 | Mayfield Laboratory - NATA Site # 25079 | ıry | Jun 03, 2021 | | | | Melbourne Labora | Sydney Laborator | Brisbane Laborat | Perth Laboratory | Mayfield Laborato | External Laboratory | 76 QA42 | 77 QA43 | 78 QA44 | 79 QA45 | 80 QA46 | Test Counts | ## **Internal Quality Control Review and Glossary** ### General - Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request. - 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated. - 3. All biota/food results are
reported on a wet weight basis on the edible portion, unless otherwise stated. - 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences. - 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds - 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise. - 7. Samples were analysed on an 'as received' basis. - 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results. - 9. This report replaces any interim results previously issued. ### **Holding Times** Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001). For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control. For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD ### Units mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres ### **Terms** Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis. LOR Limit of Reporting SPIKE Addition of the analyte to the sample and reported as percentage recovery. RPD Relative Percent Difference between two Duplicate pieces of analysis. LCS Laboratory Control Sample - reported as percent recovery. CRM Certified Reference Material - reported as percent recovery. Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water. Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery. **Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show comparison. USEPA United States Environmental Protection Agency APHA American Public Health Association TCLP Toxicity Characteristic Leaching Procedure COC Chain of Custody SRA Sample Receipt Advice QSM US Department of Defense Quality Systems Manual Version 5.3 CP Client Parent - QC was performed on samples pertaining to this report NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within. TEQ Toxic Equivalency Quotient ## QC - Acceptance Criteria RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable: Results <10 times the LOR : No Limit Results between 10-20 times the LOR: RPD must lie between 0-50% Results >20 times the LOR : RPD must lie between 0-30% Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected. WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA ## **QC Data General Comments** - 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided. - 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples. - 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS. - 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike. - 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report. - 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt. - 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte. - 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS. - 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample. - 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data. ## **Quality Control Results** | Test | Units | Result 1 | Acceptance
Limits | Pass
Limits | Qualifying
Code | |-----------------------|-------|--------------------|----------------------|----------------|--------------------| | Method Blank | | | | | | | Heavy Metals | | | | | | | Arsenic | mg/L | < 0.001 | 0.001 | Pass | | | Arsenic (filtered) | mg/L | < 0.001 | 0.001 | Pass | | | Barium | mg/L | < 0.02 | 0.02 | Pass | | | Barium (filtered) | mg/L | < 0.02 | 0.02 | Pass | | | Cadmium | mg/L | < 0.0002 | 0.0002 | Pass | | | Cadmium (filtered) | mg/L | < 0.0002 | 0.0002 | Pass | | | Chromium | mg/L | < 0.001 | 0.001 | Pass | | | Chromium (filtered) | mg/L | < 0.001 | 0.001 | Pass | | | Cobalt | mg/L | < 0.001 | 0.001 | Pass | | | Cobalt (filtered) | mg/L | < 0.001 | 0.001 | Pass | | | Copper | mg/L | < 0.001 | 0.001 | Pass | | | Copper (filtered) | mg/L | < 0.001 | 0.001 | Pass | | | Iron | mg/L | < 0.05 | 0.05 | Pass | | | Iron (filtered) | mg/L | < 0.05 | 0.05 | Pass | | | Lead | mg/L | < 0.001 | 0.001 | Pass | | | Lead (filtered) | mg/L | < 0.001 | 0.001 | Pass | | | Manganese | mg/L | < 0.005 | 0.005 | Pass | | | Manganese (filtered) | mg/L | < 0.005 | 0.005 | Pass | | | Mercury | mg/L | < 0.0001 | 0.0001 | Pass | | | Mercury (filtered) | mg/L | < 0.0001 | 0.0001 | Pass | | | Molybdenum | mg/L | < 0.005 | 0.005 | Pass | | | Molybdenum (filtered) | mg/L | < 0.005 | 0.005 | Pass | | | Nickel | mg/L | < 0.003 | 0.003 | Pass | | | Nickel (filtered) | mg/L | < 0.001 | 0.001 | Pass | | | Selenium | mg/L | < 0.001 | 0.001 | Pass | | | Titanium | mg/L | < 0.005 | 0.001 | Pass | | | | | | 0.005 | Pass | | | Titanium (filtered) | mg/L | < 0.005
< 0.005 | | | | | Zinc | mg/L | < 0.005 | 0.005 | Pass | | | Method Blank | | | | I | | | Alkali Metals | | .0.5 | 0.5 | - | | | Calcium | mg/L | < 0.5 | 0.5 | Pass | | | Magnesium | mg/L | < 0.5 | 0.5 | Pass | | | LCS - % Recovery | | 1 | | T | | | Heavy Metals | | 0.4 | 00.400 | - | | | Arsenic | % | 91 | 80-120 | Pass | | | Arsenic (filtered) | % | 101 | 80-120 | Pass | | | Barium | % | 90 | 80-120 | Pass | | | Barium (filtered) | % | 102 | 80-120 | Pass | | | Cadmium | % | 91 | 80-120 | Pass | | | Cadmium (filtered) | % | 103 | 80-120 | Pass | | | Chromium | % | 92 | 80-120 | Pass | | | Chromium (filtered) | % | 101 | 80-120 | Pass | | | Cobalt | % | 88 | 80-120 | Pass | | | Cobalt (filtered) | % | 102 | 80-120 | Pass | | | Copper | % | 90 | 80-120 | Pass | | | Copper (filtered) | % | 100 | 80-120 | Pass | | | Iron | % | 92 | 80-120 | Pass | | | Iron (filtered) | % | 102 | 80-120 | Pass | | | Lead | % | 90 | 80-120 | Pass | | | Lead (filtered) | % | 104 | 80-120 | Pass | | | т | | | Units | Result 1 | | Acceptance | Pass | Qualifying | |-----------------------|---------------|--------------|-------|----------|--|----------------------|----------------|--------------------| | | | | | | | Limits | Limits | Code | | Manganese | | | % | 90 | | 80-120 | Pass | | | Manganese (filtered) | | | % | 103 | | 80-120 | Pass | | | Mercury | | | % | 97 | | 80-120 | Pass | | | Mercury (filtered) | | | % | 100 | | 80-120 | Pass | | | Molybdenum | | | % | 100 | | 80-120 | Pass | | | Molybdenum (filtered) | | | % | 120 | | 80-120 | Pass | | | Nickel | | | % | 92 | | 80-120 | Pass | | | Nickel (filtered) | | | % | 101 | | 80-120 | Pass | | | Selenium | | | % | 89 | | 80-120 | Pass | | | Selenium (filtered) | | | % | 108 | | 80-120 | Pass | | | Titanium | | | % | 95 | | 80-120 | Pass | | | Titanium (filtered) | | | % | 106 | | 80-120 | Pass | | | Zinc | | | % | 90 | | 80-120 | Pass | | | Zinc (filtered) | | | % | 103 | | 80-120 | Pass | | | LCS - % Recovery | | | | | | | | | | Alkali Metals | | - | | | | | | | | Calcium | | | % | 96 | | 80-120 | Pass | | | Magnesium | | | % | 101 | | 80-120 | Pass | | | Test | Lab Sample ID | QA
Source | Units | Result 1 | | Acceptance
Limits | Pass
Limits | Qualifying
Code | | Spike - % Recovery | | | | 1 | | | | | | Heavy Metals | | 1 | | Result 1 | | | | | | Iron | S21-Jn12705 | NCP | % | 89 | | 75-125 | Pass | | | Manganese | S21-Jn12705 | NCP | % | 86 | | 75-125 | Pass | | | Zinc | S21-Jn12705 | NCP | % | 94 | | 75-125 | Pass | | | Spike - % Recovery | | | | 1 | l I | ī | | | | Alkali Metals | | | | Result 1 | | | | | | Calcium | S21-Jn12705 | NCP | % | 90 | | 75-125 | Pass | | | Spike - % Recovery | | | | T | 1 1 | T. | | | | Heavy Metals | | | | Result 1 | | | | | | Arsenic (filtered)
| S21-Jn12573 | CP | % | 94 | | 75-125 | Pass | | | Barium (filtered) | S21-Jn12573 | CP | % | 86 | | 75-125 | Pass | | | Cadmium (filtered) | S21-Jn12573 | CP | % | 87 | | 75-125 | Pass | | | Chromium (filtered) | S21-Jn12573 | CP | % | 95 | | 75-125 | Pass | | | Cobalt (filtered) | S21-Jn12573 | CP | % | 94 | | 75-125 | Pass | | | Iron (filtered) | S21-Jn12573 | CP | % | 99 | | 75-125 | Pass | | | Lead (filtered) | S21-Jn12573 | CP | % | 89 | | 75-125 | Pass | | | Mercury (filtered) | S21-Jn12573 | CP | % | 101 | | 75-125 | Pass | | | Nickel (filtered) | S21-Jn12573 | CP | % | 100 | | 75-125 | Pass | | | Selenium (filtered) | S21-Jn12573 | CP | % | 101 | | 75-125 | Pass | | | Titanium (filtered) | S21-Jn12573 | CP | % | 99 | | 75-125 | Pass | | | Spike - % Recovery | | | | | | | | | | Heavy Metals | | | | Result 1 | | | | | | Arsenic | S21-Jn12592 | CP | % | 98 | | 75-125 | Pass | | | Barium | S21-Jn12592 | CP | % | 94 | | 75-125 | Pass | | | Cadmium | S21-Jn12592 | CP | % | 116 | | 75-125 | Pass | | | Chromium | S21-Jn12592 | CP | % | 92 | | 75-125 | Pass | | | Cobalt | S21-Jn12592 | CP | % | 90 | | 75-125 | Pass | | | Copper | S21-Jn12592 | CP | % | 93 | | 75-125 | Pass | | | Lead | S21-Jn12592 | CP | % | 102 | | 75-125 | Pass | | | Mercury | S21-Jn12592 | CP | % | 101 | | 75-125 | Pass | | | Molybdenum | S21-Jn12592 | CP | % | 93 | | 75-125 | Pass | | | Nickel | S21-Jn12592 | CP | % | 92 | | 75-125 | Pass | | | | | | | 1 | | | | | | Selenium | S21-Jn12592 | CP | % | 98 | | 75-125 | Pass | | | Test | Lab Sample ID | QA
Source | Units | Result 1 | | | Acceptance
Limits | Pass
Limits | Qualifying
Code | |--------------------------|---------------|--------------|-------|-----------|----------|------------------|----------------------|----------------|--------------------| | Spike - % Recovery | | | | | | | | | | | Alkali Metals | | | | Result 1 | | | | | | | Magnesium | S21-Jn12592 | CP | % | 102 | | | 75-125 | Pass | | | Test | Lab Sample ID | QA
Source | Units | Result 1 | | | Acceptance
Limits | Pass
Limits | Qualifying
Code | | Duplicate | | | | | | | | | | | Heavy Metals | | | | Result 1 | Result 2 | RPD | | | | | Arsenic | S21-Jn12561 | CP | mg/L | < 0.001 | < 0.001 | <1 | 30% | Pass | | | Arsenic (filtered) | S21-Jn12561 | CP | mg/L | < 0.001 | 0.001 | 18 | 30% | Pass | | | Barium | S21-Jn12561 | CP | mg/L | 0.02 | 0.02 | 3.0 | 30% | Pass | | | Barium (filtered) | S21-Jn12561 | CP | mg/L | 0.02 | 0.02 | 11 | 30% | Pass | | | Cadmium | S21-Jn12561 | CP | mg/L | 0.0019 | 0.0019 | 2.0 | 30% | Pass | | | Cadmium (filtered) | S21-Jn12561 | CP | mg/L | 0.0019 | 0.0019 | 3.0 | 30% | Pass | | | Chromium | S21-Jn12561 | СР | mg/L | < 0.001 | < 0.001 | <1 | 30% | Pass | | | Chromium (filtered) | S21-Jn12561 | CP | mg/L | < 0.001 | < 0.001 | <1 | 30% | Pass | | | Cobalt | S21-Jn12561 | CP | mg/L | 0.003 | 0.003 | 2.0 | 30% | Pass | | | Cobalt (filtered) | S21-Jn12561 | CP | mg/L | 0.003 | 0.003 | 10 | 30% | Pass | | | Copper | S21-Jn12561 | СР | mg/L | 0.012 | 0.012 | 1.0 | 30% | Pass | | | Copper (filtered) | S21-Jn12561 | CP | mg/L | 0.008 | 0.008 | 2.0 | 30% | Pass | | | Iron | S21-Jn12561 | CP | mg/L | 2.1 | 2.1 | 2.0 | 30% | Pass | | | Iron (filtered) | S21-Jn12561 | CP | mg/L | 0.63 | 0.64 | 3.0 | 30% | Pass | | | Lead | S21-Jn12561 | CP | mg/L | 0.019 | 0.019 | 1.0 | 30% | Pass | | | Lead (filtered) | S21-Jn12561 | CP | mg/L | 0.019 | 0.006 | 4.0 | 30% | Pass | | | , | | CP | | 0.007 | 0.31 | <u>4.0</u>
<1 | 30% | Pass | | | Manganese (filtered) | S21-Jn12561 | | mg/L | | | | | | | | Manganese (filtered) | S21-Jn12561 | CP | mg/L | 0.30 | 0.31 | 2.0 | 30% | Pass | | | Mercury | S21-Jn12561 | CP | mg/L | < 0.0001 | < 0.0001 | <1 | 30% | Pass | | | Mercury (filtered) | S21-Jn12561 | CP | mg/L | < 0.0001 | < 0.0001 | <1 | 30% | Pass | | | Molybdenum | S21-Jn12561 | CP | mg/L | < 0.005 | < 0.005 | <1 | 30% | Pass | | | Molybdenum (filtered) | S21-Jn12561 | CP | mg/L | < 0.005 | < 0.005 | <1 | 30% | Pass | | | Nickel | S21-Jn12561 | CP | mg/L | 0.005 | 0.005 | 6.0 | 30% | Pass | | | Nickel (filtered) | S21-Jn12561 | CP | mg/L | 0.004 | 0.005 | 10 | 30% | Pass | | | Selenium | S21-Jn12561 | CP | mg/L | 0.001 | < 0.001 | 43 | 30% | Fail | Q15 | | Selenium (filtered) | S21-Jn12561 | CP | mg/L | < 0.001 | < 0.001 | <1 | 30% | Pass | | | Titanium | S21-Jn12561 | CP | mg/L | < 0.005 | < 0.005 | <1 | 30% | Pass | | | Titanium (filtered) | S21-Jn12561 | CP | mg/L | < 0.005 | < 0.005 | <1 | 30% | Pass | | | Zinc | S21-Jn12561 | CP | mg/L | 2.3 | 2.3 | <1 | 30% | Pass | | | Zinc (filtered) | S21-Jn12561 | CP | mg/L | 1.6 | 1.6 | 2.0 | 30% | Pass | | | Duplicate | | | | | | | | | | | Alkali Metals | | | | Result 1 | Result 2 | RPD | | | | | Calcium | S21-Jn12561 | CP | mg/L | 11 | 11 | <1 | 30% | Pass | | | Magnesium | S21-Jn12561 | CP | mg/L | 8.8 | 8.9 | 1.0 | 30% | Pass | | | Duplicate | | | | | | | | | | | Heavy Metals | | | | Result 1 | Result 2 | RPD | | | | | Arsenic | S21-Jn12575 | CP | mg/L | < 0.001 | < 0.001 | <1 | 30% | Pass | | | Barium | S21-Jn12575 | CP | mg/L | < 0.02 | < 0.02 | <1 | 30% | Pass | | | Cadmium | S21-Jn12575 | СР | mg/L | < 0.0002 | < 0.0002 | <1 | 30% | Pass | | | Chromium | S21-Jn12575 | СР | mg/L | < 0.001 | < 0.001 | <1 | 30% | Pass | | | Cobalt | S21-Jn12575 | CP | mg/L | < 0.001 | < 0.001 | <1 | 30% | Pass | | | Copper | S21-Jn12575 | CP | mg/L | 0.002 | 0.002 | 8.0 | 30% | Pass | | | Iron | S21-Jn12575 | CP | mg/L | 0.69 | 0.57 | 18 | 30% | Pass | | | Lead | S21-Jn12575 | CP | mg/L | 0.004 | 0.005 | 2.0 | 30% | Pass | | | Manganese | S21-Jn12575 | CP | mg/L | 0.004 | 0.003 | 1.0 | 30% | Pass | | | Mercury | S21-Jn12575 | CP | mg/L | < 0.0001 | < 0.0001 | <1 | 30% | Pass | | | ivi c i cui y | 32 I-JII123/3 | | my/L | ~ U.UUU I | <u> </u> | <u> </u> | 3070 | газэ | | | Molybdenum | S21-Jn12575 | CP | mg/L | < 0.005 | < 0.005 | <1 | 30% | Pass | | Report Number: 800910-W | Duplicate | | | | | | | | | | | |---------------|-------------|----|----------|----------|----------|-----|-----|------|--|--| | Heavy Metals | | | Result 1 | Result 2 | RPD | | | | | | | Selenium | S21-Jn12575 | CP | mg/L | < 0.001 | < 0.001 | <1 | 30% | Pass | | | | Titanium | S21-Jn12575 | CP | mg/L | < 0.005 | < 0.005 | <1 | 30% | Pass | | | | Zinc | S21-Jn12575 | CP | mg/L | 0.042 | 0.039 | 8.0 | 30% | Pass | | | | Duplicate | | | | | | | | | | | | Alkali Metals | | | | Result 1 | Result 2 | RPD | | | | | | Calcium | S21-Jn12575 | CP | mg/L | 2.6 | 2.7 | 6.0 | 30% | Pass | | | | Magnesium | S21-Jn12575 | CP | mg/L | 2.8 | 2.9 | 2.0 | 30% | Pass | | | ### Comments ## Sample Integrity Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No ## **Qualifier Codes/Comments** Code Description Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report. ## Authorised by: Andrew Black Analytical Services Manager John Nguyen Senior Analyst-Metal (NSW) Glenn Jackson General Manager Final Report - this report replaces any previously issued Report - Indicates Not Requested - * Indicates NATA accreditation does not cover the performance of this service Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$ Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received. Ramboll Environ Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060 NATA Accredited Accreditation Number 1261 Site Number 18217 Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition of Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection and proficiency testing scheme providers reports. Attention: Stephen Maxwell Report 802794-S Project name ADDITIONAL - CAPTAINS FLAT LEAD MANAGEMENT PLAN Project ID 318001193 Received Date Jun 15, 2021 | Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference Heavy Metals | LOR | Unit | SED1
Soil
S21-Jn27518
Jun 03, 2021 | SED2
Soil
S21-Jn27519
Jun 03, 2021 | SED3
Soil
S21-Jn27520
Jun 03, 2021 | SED4
Soil
S21-Jn27521
Jun 03, 2021 | |---|-----|-------|---|---|---|---| | Aluminium | 20 | mg/kg | 17000 | 12000 | 14000 | 9600 | | % Moisture | 1 | % | 78 | 65 | 59 | 65 | | Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled | | | SED5
Soil
S21-Jn27522
Jun 03, 2021 | SED6
Soil
S21-Jn27523
Jun 03, 2021 | SED7
Soil
S21-Jn27524
Jun 03, 2021 | SED8
Soil
S21-Jn27525
Jun 03, 2021 | |---|-----|-------|---|---|---|---| | Test/Reference | LOR | Unit | | | | | | Heavy Metals | | | | | | | |
Aluminium | 20 | mg/kg | 6000 | 5500 | 5700 | 15000 | | | | | | | | | | % Moisture | 1 | % | 36 | 19 | 14 | 31 | | Client Sample ID | | | SED9 | SED10 | SED11 | SED12 | |---------------------|-----|-------|--------------|--------------|--------------|--------------| | Sample Matrix | | | Soil | Soil | Soil | Soil | | Eurofins Sample No. | | | S21-Jn27526 | S21-Jn27527 | S21-Jn27528 | S21-Jn27529 | | Date Sampled | | | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | | Test/Reference | LOR | Unit | | | | | | Heavy Metals | | | | | | | | Aluminium | 20 | mg/kg | 5100 | 3600 | 14000 | 4000 | | | | | | | | | | % Moisture | 1 | % | 15 | 18 | 55 | 8.5 | | Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled | | | SED13
Soil
S21-Jn27530
Jun 03, 2021 | SED14
Soil
S21-Jn27531
Jun 03, 2021 | SED15
Soil
S21-Jn27532
Jun 03, 2021 | QA35
Soil
S21-Jn27533
Jun 03, 2021 | |---|-----|-------|--|--|--|---| | Test/Reference | LOR | Unit | | | | | | Heavy Metals | | | | | | | | Aluminium | 20 | mg/kg | 9900 | 10000 | 4500 | 2900 | | | | | | | | | | % Moisture | 1 | % | 16 | 62 | 23 | 25 | | Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled | | | QA01
Soil
S21-Jn27539
Jun 03, 2021 | QA02
Soil
S21-Jn27540
Jun 03, 2021 | QA03
Soil
S21-Jn27541
Jun 03, 2021 | QA04
Soil
S21-Jn27542
Jun 03, 2021 | |---|-----|-------|---|---|---|---| | Test/Reference | LOR | Unit | | | | | | Heavy Metals | | | | | | | | Aluminium | 20 | mg/kg | 5000 | 4100 | 5000 | 6000 | | | | | | | | | | % Moisture | 1 | % | 9.3 | 6.9 | 4.4 | 30 | | Client Sample ID | | | QA05 | QA06 | QA07 | QA08 | |---------------------|-----|-------|--------------|--------------|--------------|--------------| | Sample Matrix | | | Soil | Soil | Soil | Soil | | Eurofins Sample No. | | | S21-Jn27543 | S21-Jn27544 | S21-Jn27545 | S21-Jn27546 | | Date Sampled | | | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | | Test/Reference | LOR | Unit | | | | | | Heavy Metals | | | | | | | | Aluminium | 20 | mg/kg | 7500 | 6600 | 2800 | 7400 | | | | | | | | | | % Moisture | 1 | % | 12 | 11 | 5.8 | 33 | | Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference | LOR | Unit | QA09
Soil
S21-Jn27547
Jun 03, 2021 | Soil
S21-Jn27548 | QA11
Soil
S21-Jn27549
Jun 03, 2021 | QA12
Soil
S21-Jn27550
Jun 03, 2021 | |--|-----|-------|---|---------------------|---|---| | Heavy Metals | | | -100 | | | 0=00 | | Aluminium | 20 | mg/kg | 7100 | 3300 | 7700 | 9500 | | % Moisture | 1 | % | 28 | 35 | 1.8 | 4.4 | | Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled | | | QA13
Soil
S21-Jn27551
Jun 03, 2021 | Soil
S21-Jn27552 | QA15
Soil
S21-Jn27553
Jun 03, 2021 | QA16
Soil
S21-Jn27554
Jun 03, 2021 | |---|-----|-------|---|---------------------|---|---| | Test/Reference | LOR | Unit | | | | | | Heavy Metals | | | | | | | | Aluminium | 20 | mg/kg | 10000 | 2500 | 2400 | 7800 | | | | | | | | | | % Moisture | 1 | % | 11 | 12 | 1.9 | 5.4 | | Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled | | | QA17
Soil
S21-Jn27555
Jun 03, 2021 | QA18
Soil
S21-Jn27556
Jun 03, 2021 | QA19
Soil
S21-Jn27557
Jun 03, 2021 | QA20
Soil
S21-Jn27558
Jun 03, 2021 | |---|-----|-------|---|---|---|---| | Test/Reference | LOR | Unit | | | | | | Heavy Metals | | | | | | | | Aluminium | 20 | mg/kg | 3800 | 1700 | 3300 | 10000 | | | | | | | | | | % Moisture | 1 | % | 4.0 | 4.0 | 7.6 | 16 | | Client Sample ID | | | QA21 | QA22 | QA23 | QA24 | |---------------------|-----|-------|--------------|--------------|--------------|--------------| | Sample Matrix | | | Soil | Soil | Soil | Soil | | Eurofins Sample No. | | | S21-Jn27559 | S21-Jn27560 | S21-Jn27561 | S21-Jn27562 | | Date Sampled | | | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | | Test/Reference | LOR | Unit | | | | | | Heavy Metals | · | | | | | | | Aluminium | 20 | mg/kg | 23000 | 19000 | 14000 | 9500 | | | | | | | | | | % Moisture | 1 | % | 16 | 16 | 4.8 | 6.0 | | Client Sample ID | | | QA25 | QA26 | QA27 | QA28 | |---------------------|-----|-------|--------------|--------------|--------------|--------------| | Sample Matrix | | | Soil | Soil | Soil | Soil | | Eurofins Sample No. | | | S21-Jn27563 | S21-Jn27564 | S21-Jn27565 | S21-Jn27566 | | Date Sampled | | | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | | Test/Reference | LOR | Unit | | | | | | Heavy Metals | | | | | | | | Aluminium | 20 | mg/kg | 11000 | 7600 | 8400 | 8300 | | | | | | | | | | % Moisture | 1 | % | 13 | 23 | 24 | 25 | Report Number: 802794-S | Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled | | | QA29
Soil
S21-Jn27567
Jun 03, 2021 | QA30
Soil
S21-Jn27568
Jun 03, 2021 | QA31
Soil
S21-Jn27569
Jun 03, 2021 | QA32
Soil
S21-Jn27570
Jun 03, 2021 | |---|-----|-------|---|---|---|---| | Test/Reference | LOR | Unit | | | | | | Heavy Metals | | | | | | | | Aluminium | 20 | mg/kg | 3100 | 12000 | 12000 | 11000 | | | | | | | | | | % Moisture | 1 | % | 1.2 | < 1 | 12 | 9.4 | | Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled | | | QA33
Soil
S21-Jn27571
Jun 03, 2021 | QA34
Soil
S21-Jn27572
Jun 03, 2021 | QA37
Soil
S21-Jn27575
Jun 03, 2021 | QA38
Soil
S21-Jn27576
Jun 03, 2021 | |---|-----|-------|---|---|---|---| | Test/Reference | LOR | Unit | | | | | | Heavy Metals | | | | | | | | Aluminium | 20 | mg/kg | 6500 | 6300 | 18000 | 18000 | | | | | | | | | | % Moisture | 1 | % | 8.7 | 9.2 | 5.6 | 6.6 | | Client Sample ID | | | QA39 | QA40 | QA41 | QA42 | |---------------------|-----|-------|--------------|--------------|--------------|--------------| | Sample Matrix | | | Soil | Soil | Soil | Soil | | Eurofins Sample No. | | | S21-Jn27577 | S21-Jn27578 | S21-Jn27579 | S21-Jn27580 | | Date Sampled | | | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | | Test/Reference | LOR | Unit | | | | | | Heavy Metals | | | | | | | | Aluminium | 20 | mg/kg | 24000 | 14000 | 14000 | 14000 | | | | | | | | | | % Moisture | 1 | % | 9.1 | 2.8 | 14 | 16 | | Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference Heavy Metals | LOR | Unit | QA43
Soil
S21-Jn27581
Jun 03, 2021 | Soil
S21-Jn27582 | QA45
Soil
S21-Jn27583
Jun 03, 2021 | QA46
Soil
S21-Jn27584
Jun 03, 2021 | |---|-----|-------|---|---------------------|---|---| | Aluminium | 20 | mg/kg | 7500 | 8000 | 7000 | 12000 | | % Moisture | 1 | % | 12 | 15 | 24 | 18 | Report Number: 802794-S ## Sample History Where samples are submitted/analysed over several days, the last date of extraction is reported. If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time. | Description | Testing Site | Extracted | Holding Time | |--|--------------|--------------|---------------------| | Heavy Metals | Sydney | Jun 15, 2021 | 180 Days | | - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS | | | | | % Moisture | Sydney | Jun 15, 2021 | 14 Days | - Method: LTM-GEN-7080 Moisture Report Number: 802794-S ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 Australia 6 Monterey Road Dandenong South VIC 3175 1Phone: +61 3 8564 5000 NATA # 1261 P Site # 1254 & 14271 Melbourne Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +617 3902 4600 NATA # 1261 Site # 20794 Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **New Zealand** Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Box 60 Wickham 2293 Phone: +61'2 4968 8448 NATA # 1261 Site # 25079 Received: **Auckland** 35
O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 Priority: Due: Jun 15, 2021 3:39 AM Stephen Maxwell Jun 18, 2021 3 Day Contact Name: 318001193 802794 Order No.: Report #: Phone: ADDITIONAL - CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: | Moisture Set | | × | | | | | | | | | | | | | | | |----------------------|---|---------------------------------------|---|--------------------------------------|---|----------------------------|------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | Aluminium (filtered) | | × | | | | | | × | × | × | × | × | × | × | × | × | | Aluminium | | × | | | | | | × | × | × | × | × | × | × | × | × | | | | | | | | | LAB ID | S21-Jn27503 | S21-Jn27504 | S21-Jn27505 | S21-Jn27506 | S21-Jn27507 | S21-Jn27508 | S21-Jn27509 | S21-Jn27510 | S21-Jn27511 | | | 71 | | | | | | Matrix | Water | Sample Detail | # 1254 & 142 | 8217 | 20794 | 36 | 25079 | | Sampling
Time | | | | | | | | | | | s o | ry - NATA Site | NATA Site #1 | - NATA Site # | ATA Site # 237 | - NATA Site # | | Sample Date | Jun 03, 2021 | | Melbourne Laboratory - NATA Site # 1254 & 14271 | Sydney Laboratory - NATA Site # 18217 | Brisbane Laboratory - NATA Site # 20794 | Perth Laboratory - NATA Site # 23736 | Mayfield Laboratory - NATA Site # 25079 | External Laboratory | Sample ID | SW1 | SW2 | SW3 | SW4 | SW5 | SW6 | SW7 | SW8 | SW9 | | | Melbo | Sydne | Brisb | Perth | Mayfi | Exter | No | - | 2 | 3 | 4 | 5 | | 7 | 00 | 6 | Australia eurofins 💸 **Environment Testing** ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 6 Monterey Road Dandenong South VIC 3175 16 Phone : +61 3 8564 5000 Lt NATA # 1261 Site # 1254 & 14271 N Melbourne Sydney Unit F3, Building F 11 5 16 Mars Road M Lane Cove West NSW 2066 P Phone : +612 9900 8400 N NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +617 3902 4600 NATA # 1261 Site # 20794 Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Auckland**35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** Order No.: Report #: 318001193 802794 Phone: Fax: ADDITIONAL - CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Box 60 Wickham 2293 Phone: +61'2 4968 8448 NATA # 1261 Site # 25079 Received: Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Priority: Due: Jun 15, 2021 3:39 AM Jun 18, 2021 3 Day Stephen Maxwell Contact Name: | Moisture Set | | × | | | | | | | | | | | × | × | × | × | × | |----------------------|---|---------------------------------------|---|--------------------------------------|---|----------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | Aluminium (filtered) | | × | | | | | × | × | × | × | × | × | | | | | | | Aluminium | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | | | | | | | | S21-Jn27512 | S21-Jn27513 | S21-Jn27514 | S21-Jn27515 | S21-Jn27516 | S21-Jn27517 | S21-Jn27518 | S21-Jn27519 | S21-Jn27520 | S21-Jn27521 | S21-Jn27522 | | | 171 | | | | | | Water | Water | Water | Water | Water | Water | Soil | Soil | Soil | Soil | Soil | | Sample Detail | # 1254 & 142 | 18217 | 20794 | 736 | 25079 | | | | | | | | | | | | | | တိ | ry - NATA Site | NATA Site # 1 | / - NATA Site # | IATA Site # 237 | - NATA Site # | | Jun 03, 2021 | | Melbourne Laboratory - NATA Site # 1254 & 14271 | Sydney Laboratory - NATA Site # 18217 | Brisbane Laboratory - NATA Site # 20794 | Perth Laboratory - NATA Site # 23736 | Mayfield Laboratory - NATA Site # 25079 | External Laboratory | SW10 | SW11 | SW12 | SW13 | SW14 | SW15 | SED1 | SED2 | SED3 | SED4 | SED5 | | | Melbo | Sydn | Brisb | Perth | Mayfi | Exter | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | eurofins 💸 1/21 Smallwood Place Murarrie QLD 4172 5 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 46-48 Banksia Road Weisnpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 **New Zealand** Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079 318001193 802794 Lane Cove West NSW 2066 Phone: +612 9900 8400 NATA# 1261 Site# 18217 Site # 1254 & 14271 ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 Order No.: Report #: Phone: Priority: Due: 3 Day Contact Name: Jun 15, 2021 3:39 AM Received: Jun 18, 2021 Stephen Maxwell Eurofins Analytical Services Manager: Andrew Black 318001193 Project Name: Project ID: ADDITIONAL - CAPTAINS FLAT LEAD MANAGEMENT PLAN Moisture Set Aluminium (filtered) Aluminium Sample Detail × × × Melbourne Laboratory - NATA Site # 1254 & 14271 Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217 Mayfield Laboratory - NATA Site # 25079 External Laboratory SED6 SED7 7 22 23 24 25 26 Perth Laboratory - NATA Site # 23736 × × × × × × × × × S21-Jn27525 Soil Soil Soil Soil Jun 03, 2021 SED8 SED9 Jun 03, 2021 Soil S21-Jn27526 S21-Jn27527 S21-Jn27528 S21-Jn27529 S21-Jn27530 S21-Jn27524 × Soil Soil Soil × × × × S21-Jn27523 × S21-Jn27532 S21-Jn27533 S21-Jn27531 Soil Soil Jun 03, 2021 SED15 QA35 Jun 03, 2021 Jun 03, 2021 Jun 03, 2021 SED13 27 28 SED14 29 Jun 03, 2021 SED10 SED11 SED12 Page 8 of 16 **New Zealand** # **Environment Testing** ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 Australia 6 Monterey Road U Dandenong South VIC 3175 16 Phone : +61 3 8564 5000 L NATA # 1261 PIS Site # 1254 & 14271 N Melbourne Sydney Unit F3, Building F 11 5 16 Mars Road M Lane Cove West NSW 2066 P Phone : +612 9900 8400 N NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +617 3902 4600 NATA # 1261 Site # 20794 Order No.: 318001193 802794 Report #: Phone: Fax: ADDITIONAL - CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Box 60 Wickham 2293 Phone: +61'2 4968 8448 NATA # 1261 Site # 25079 Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 Received: Due: Jun 15, 2021 3:39 AM Jun 18, 2021 3 Day Contact Name: Priority: Stephen Maxwell | Moisture Set | | × | | | | | | | | | | × | × | × | × | × | × | |----------------------|--|---------------------------------------|---|--------------------------------------|---|----------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | Aluminium (filtered) | | × | | | | | × | | | | | | | | | | | | Aluminium | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | | | | | | | | S21-Jn27534 | S21-Jn27535 | S21-Jn27536 | S21-Jn27537 | S21-Jn27538 | S21-Jn27539 | S21-Jn27540 | S21-Jn27541 | S21-Jn27542 | S21-Jn27543 | S21-Jn27544 | | | 71 | | | | | | Water | Water | Water | Water | Water | Soil | Soil | Soil | Soil | Soil | Soil | | Sample Detail | # 1254 & 142 | 8217 | 20794 | 36 | 25079 | | | | | | | | | | | | | | ig
Ø | ry - NATA Site | NATA Site # 1 | - NATA Site # | ATA Site # 237 | - NATA Site # 2 | | Jun 03, 2021 | | Melbourne Laboratory - NATA Site # 1254 & 1427 | Sydney Laboratory - NATA Site # 18217 | Brisbane Laboratory - NATA Site # 20794 | Perth Laboratory - NATA Site # 23736 | Mayfield Laboratory - NATA Site # 25079 | External Laboratory | QA35 | R01 | R02 | R03 | R04 | QA01 | QA02 | QA03 | | QA05 | QA06 | | | Melbo | Sydn | Brisb | Perth | Mayfi | Exter | 32 | 33 | 34 | 35 | 36 | 37 | | | | 41 | 42 | Australia 6 Monterey Road Dandenong South VIC 3175 1Phone: +61 3 8564 5000 NATA # 1261 P Melbourne **Environment Testing** Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +612 9900 8400 NATA# 1261 Site# 18217 Site # 1254 & 14271 ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 802794 Report #: Phone: Perth 46-48 Banksia Road Weisnpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** 1/21 Smallwood Place Murarrie QLD 4172 5 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 318001193 Order No.: PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Jun 15, 2021 3:39 AM Jun 18, 2021 Received: Priority: Due: 3 Day Contact Name: Stephen Maxwell Eurofins Analytical Services Manager: Andrew Black ADDITIONAL -
CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: Moisture Set Aluminium (filtered) Aluminium Sample Detail × × × × × × × × × > × × × × S21-Jn27550 Soil Soil Soil S21-Jn27552 S21-Jn27553 S21-Jn27554 > Soil Soil > > Jun 03, 2021 Jun 03, 2021 QA17 Jun 03, 2021 Jun 03, 2021 Jun 03, 2021 QA13 QA14 QA11 **QA12** QA15 QA16 S21-Jn27551 S21-Jn27549 Soil Soil Soil Soil Jun 03, 2021 Soil × × S21-Jn27545 S21-Jn27546 S21-Jn27547 S21-Jn27548 × × × Melbourne Laboratory - NATA Site # 1254 & 14271 Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217 Mayfield Laboratory - NATA Site # 25079 External Laboratory QA07 43 44 45 46 47 48 49 50 51 52 QA08 QA09 QA10 Perth Laboratory - NATA Site # 23736 × S21-Jn27555 Page 10 of 16 Australia ## **Environment Testing** 6 Monterey Road Dandenong South VIC 3175 1Phone: +61 3 8564 5000 NATA # 1261 P Site # 1254 & 14271 Melbourne ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +617 3902 4600 NATA # 1261 Site # 20794 318001193 Order No.: 802794 Report #: Phone: ADDITIONAL - CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Box 60 Wickham 2293 Phone: +61'2 4968 8448 NATA # 1261 Site # 25079 Received: Due: Jun 15, 2021 3:39 AM Jun 18, 2021 Contact Name: Priority: 3 Day Stephen Maxwell | Moisture Set | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | |----------------------|---|---------------------------------------|---|--------------------------------------|---|---------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | Aluminium (filtered) | | × | | | | | | | | | | | | | | | | | Aluminium | | × | | | | | × | × | × | X | X | X | X | X | X | × | × | | | | | | | | | S21-Jn27556 | S21-Jn27557 | S21-Jn27558 | S21-Jn27559 | S21-Jn27560 | S21-Jn27561 | S21-Jn27562 | S21-Jn27563 | S21-Jn27564 | S21-Jn27565 | S21-Jn27566 | | = | 14271 | | | | | | Soil | Sample Detail | Melbourne Laboratory - NATA Site # 1254 & 14271 | ATA Site # 18217 | Brisbane Laboratory - NATA Site # 20794 | A Site # 23736 | Mayfield Laboratory - NATA Site # 25079 | | Jun 03, 2021 | | urne Laboratory - | Sydney Laboratory - NATA Site # 18217 | ane Laboratory - N | Perth Laboratory - NATA Site # 23736 | eld Laboratory - N | External Laboratory | - | QA19 Jur | QA20 Jur | QA21 Jur | QA22 Jur | QA23 Jur | QA24 Jur | QA25 Jur | QA26 Jur | QA27 Jur | QA28 Jur | | | Melbc | Sydne | Brisb | Perth | Mayfi | Exteri | 54 (| 22 | 26 (| 22 (| 28 (| 29 (| 09 | 61 (| 62 | 63 (| 64 | eurofins 💸 **Environment Testing** ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 6 Monterey Road U Dandenong South VIC 3175 16 Phone : +61 3 8564 5000 L NATA # 1261 PIS Site # 1254 & 14271 N Melbourne Australia Sydney Unit F3, Building F 11 S 16 Mars Road M Lane Cove West NSW 2066 P Phone : +612 9900 8400 N NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +617 3902 4600 NATA # 1261 Site # 20794 318001193 Order No.: Report #: Phone: Fax: ADDITIONAL - CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61'2 4968 8448 NATA # 1261 Site # 25079 Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Auckland**35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 New Zealand Received: Priority: Due: Jun 15, 2021 3:39 AM Jun 18, 2021 3 Day Contact Name: Stephen Maxwell | Moisture Set | | × | | | | | × | × | X | X | X | X | × | × | × | × | × | |----------------------|---|---------------------------------------|---|--------------------------------------|---|----------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | Aluminium (filtered) | | × | | | | | | | | | | | | | | | | | Aluminium | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | | | | | | | | S21-Jn27567 | S21-Jn27568 | S21-Jn27569 | S21-Jn27570 | S21-Jn27571 | S21-Jn27572 | S21-Jn27575 | S21-Jn27576 | S21-Jn27577 | S21-Jn27578 | S21-Jn27579 | | | 71 | | | | | | Soil | Sample Detail | # 1254 & 14271 | 8217 | 20794 | '36 | 25079 | | | | | | | | | | | | | | eg. | ry - NATA Site | NATA Site #1 | - NATA Site # | ATA Site # 237 | - NATA Site # | | Jun 03, 2021 | | Melbourne Laboratory - NATA Site # 1254 & | Sydney Laboratory - NATA Site # 18217 | Brisbane Laboratory - NATA Site # 20794 | Perth Laboratory - NATA Site # 23736 | Mayfield Laboratory - NATA Site # 25079 | External Laboratory | QA29 | QA30 | QA31 | QA32 | QA33 | QA34 | QA37 | QA38 | QA39 | QA40 | QA41 | | | Melbo | Sydn | Brisb | Perth | Mayfi | Exter | 9 | | 29 | 89 | 69 | 02 | 71 | 72 | 73 | 74 | 75 | Australia # **Environment Testing** ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 6 Monterey Road U Dandenong South VIC 3175 16 Phone : +61 3 8564 5000 L NATA # 1261 PIS Site # 1254 & 14271 N Melbourne Sydney Unit F3, Building F 11 5 16 Mars Road M Lane Cove West NSW 2066 P Phone : +612 9900 8400 N NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +617 3902 4600 NATA # 1261 Site # 20794 New Zealand Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Auckland**35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61'2 4968 8448 NATA # 1261 Site # 25079 Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Received: Due: Jun 15, 2021 3:39 AM Jun 18, 2021 Contact Name: Priority: ADDITIONAL - CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: 318001193 802794 Order No.: Report #: Phone: Fax: 3 Day Stephen Maxwell | | Sample Detail | |--|---------------| |--|---------------| ### **Internal Quality Control Review and Glossary** ### General - Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request. - 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated. - 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated. - 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences. - 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds - 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise. - 7. Samples were analysed on an 'as received' basis. - 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results. - 9. This report replaces any interim results previously issued. ### **Holding Times** Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001). For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control. For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD ### Units mg/kg: milligrams per kilogram mg/L: micrograms per litre ug/L: micrograms per litre **ppm:** Parts per million **ppb:** Parts per billion %: Percentage org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres ### **Terms** Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis. LOR Limit of Reporting SPIKE Addition of the analyte to the sample and reported as percentage recovery. RPD Relative Percent Difference between two Duplicate pieces of analysis. LCS Laboratory Control Sample - reported as percent recovery. CRM Certified Reference Material - reported as percent recovery. Method Blank In the case of
solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water. Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery. **Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show comparison. USEPA United States Environmental Protection Agency APHA American Public Health Association TCLP Toxicity Characteristic Leaching Procedure COC Chain of Custody SRA Sample Receipt Advice QSM US Department of Defense Quality Systems Manual Version 5.3 CP Client Parent - QC was performed on samples pertaining to this report NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within. TEQ Toxic Equivalency Quotient ## QC - Acceptance Criteria RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable: Results <10 times the LOR : No Limit Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$ Results >20 times the LOR : RPD must lie between 0-30% Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected. WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA ## **QC Data General Comments** - 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided. - 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples. - 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS. - 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike. - 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report. - 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt. - 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte. - 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS. - 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample. 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data. ## **Quality Control Results** | Test | | | Units | Result 1 | | | Acceptance
Limits | Pass
Limits | Qualifying
Code | |--------------------|---------------|--------------|-------|-----------------|-----------------|------------|----------------------|----------------|--------------------| | Method Blank | | | | | | | | | | | Heavy Metals | | | | | | | | | | | Aluminium | | | mg/kg | < 20 | | | 20 | Pass | | | LCS - % Recovery | | | | | 1 | | | | | | Heavy Metals | | | | | | | | | | | Aluminium | | | % | 116 | | | 80-120 | Pass | | | Test | Lab Sample ID | QA
Source | Units | Result 1 | | | Acceptance
Limits | Pass
Limits | Qualifying
Code | | Spike - % Recovery | | | | | 1 1 | | | ı | | | Heavy Metals | T | | | Result 1 | | | | | | | Aluminium | S21-Jn27567 | CP | % | 102 | | | 75-125 | Pass | | | Test | Lab Sample ID | QA
Source | Units | Result 1 | | | Acceptance
Limits | Pass
Limits | Qualifying
Code | | Duplicate | | | | | | | | | | | Heavy Metals | 1 | | | Result 1 | Result 2 | RPD | | | | | Aluminium | S21-Jn27519 | CP | mg/kg | 12000 | 15000 | 16 | 30% | Pass | | | Duplicate | | | | | | | | | | | | | | | Result 1 | Result 2 | RPD | | | | | % Moisture | S21-Jn27521 | CP | % | 65 | 67 | 3.0 | 30% | Pass | | | Duplicate | | | | I | I I | | 1 | Π | | | | T | | | Result 1 | Result 2 | RPD | | _ | | | % Moisture | S21-Jn27531 | СР | % | 62 | 61 | 2.0 | 30% | Pass | | | Duplicate | | | | D tt. 4 | D # 0 | DDD | T | Ī | | | % Moisture | S21-Jn27546 | СР | % | Result 1 | Result 2 | RPD
6.0 | 30% | Pass | | | Duplicate | 321-31127340 | CF | 70 | 33 | 31 | 0.0 | 30% | F 455 | | | Heavy Metals | | | | Result 1 | Result 2 | RPD | | | | | Aluminium | S21-Jn27556 | CP | mg/kg | 1700 | 1800 | 6.0 | 30% | Pass | | | Duplicate | | <u> </u> | | | 1.000 | 0.0 | 3070 | . 455 | | | | | | | Result 1 | Result 2 | RPD | | | | | % Moisture | S21-Jn27556 | СР | % | 4.0 | 4.3 | 8.0 | 30% | Pass | | | Duplicate | | | | | | | | | | | Heavy Metals | | | | Result 1 | Result 2 | RPD | | | | | Aluminium | S21-Jn27561 | CP | mg/kg | 14000 | 13000 | 4.0 | 30% | Pass | | | Duplicate | | | | | , , | | | | | | Heavy Metals | T | - | | Result 1 | Result 2 | RPD | | | | | Aluminium | S21-Jn27562 | CP | mg/kg | 9500 | 9600 | <1 | 30% | Pass | | | Duplicate | | | | | | | | | | | | 1 004 1 | 0- | | Result 1 | Result 2 | RPD | 0.534 | _ | | | % Moisture | S21-Jn27566 | СР | % | 25 | 22 | 12 | 30% | Pass | | | Duplicate | | | | D | D | DDD | | | | | Heavy Metals | 004 1::07570 | 0.5 | | Result 1 | Result 2 | RPD | 200/ | Deri | | | Aluminium | S21-Jn27576 | CP | mg/kg | 18000 | 15000 | 17 | 30% | Pass | | | Duplicate | | | | Posult 1 | Posult 2 | DDD | | | | | % Moisture | S21-Jn27576 | СР | % | Result 1
6.6 | Result 2
6.6 | 1.0 | 30% | Pass | | | % Moisture | 321-3112/3/0 | UP | -70 | 0.0 | 0.0 | 1.0 | 30% | rass | | ### Comments ## Sample Integrity Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No ## Authorised by: Andrew Black Analytical Services Manager John Nguyen Senior Analyst-Metal (NSW) Glenn Jackson General Manager Final Report - this report replaces any previously issued Report - Indicates Not Requested - * Indicates NATA accreditation does not cover the performance of this service Measurement uncertainty of test data is available on request or please click here. Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received. Ramboll Environ Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060 NATA Accredited Accreditation Number 1261 Site Number 18217 Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition of Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection and proficiency testing scheme providers reports. Attention: Stephen Maxwell Report 802794-W Project name ADDITIONAL - CAPTAINS FLAT LEAD MANAGEMENT PLAN Project ID 318001193 Received Date Jun 15, 2021 | Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference Heavy Metals | LOR | Unit | SW1
Water
S21-Jn27503
Jun 03, 2021 | SW2
Water
S21-Jn27504
Jun 03, 2021 | SW3
Water
S21-Jn27505
Jun 03, 2021 | SW4
Water
S21-Jn27506
Jun 03, 2021 | |---|------|------|---|---|---|---| | Aluminium | 0.05 | mg/L | 0.33 | 0.70 | 1.6 | 0.62 | | Aluminium (filtered) | 0.05 | mg/L | 0.09 | 0.06 | < 0.05 | 0.10 | | | | | | SW5 | SW6 | SW7 | SW8 | | |----------------------|--|-------------|-------|--------------|--------------|--------------|--------------|--| | | | Water | Water | Water | Water | | | | | Eurofins Sample No. | | S21-Jn27507 | | S21-Jn27508 | S21-Jn27509 | S21-Jn27510 | | | | Date Sampled | | | | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | | | Test/Reference | | LOR | Unit | | | | | | | Heavy Metals | | | | | | | | | | Aluminium | | 0.05 | mg/L | 13 | 2.5 | 2.0 | 16 | | | Aluminium (filtered) | | 0.05 | mg/L | 13 | 0.74 | 0.51 | 13 | | | Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference Heavy Metals | LOR | Unit | SW9
Water
S21-Jn27511
Jun 03, 2021 | SW10
Water
S21-Jn27512
Jun 03, 2021 | SW11
Water
S21-Jn27513
Jun 03, 2021 | SW12
Water
S21-Jn27514
Jun 03, 2021 | |---|------|------|---|--|--|--| | Aluminium | 0.05 | mg/L | 16 | 2.6 | 0.50 | 24 | | Aluminium
(filtered) | 0.05 | mg/L | 15 | 1.2 | 0.16 | 23 | | Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference | LOR | Unit | SW13
Water
S21-Jn27515
Jun 03, 2021 | SW14
Water
S21-Jn27516
Jun 03, 2021 | SW15
Water
S21-Jn27517
Jun 03, 2021 | QA35
Water
S21-Jn27534
Jun 03, 2021 | |--|------|------|--|--|--|--| | Heavy Metals | | | | | | | | Aluminium | 0.05 | mg/L | 2.4 | 0.27 | 0.21 | 14 | | Aluminium (filtered) | 0.05 | mg/L | 1.1 | 0.14 | 0.10 | 12 | | Client Sample ID
Sample Matrix | | | R01
Water | R02
Water | R03
Water | R04
Water | |-----------------------------------|------|------|--------------|--------------|--------------|--------------| | Eurofins Sample No. | | | S21-Jn27535 | S21-Jn27536 | S21-Jn27537 | S21-Jn27538 | | Date Sampled | | | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | | Test/Reference | LOR | Unit | | | | | | Heavy Metals | | | | | | | | Aluminium | 0.05 | mg/L | < 0.05 | 0.20 | < 0.05 | < 0.05 | Page 2 of 14 Report Number: 802794-W ## Sample History Where samples are submitted/analysed over several days, the last date of extraction is reported. If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time. | Description | Testing Site | Extracted | Holding Time | |--|--------------|--------------|---------------------| | Heavy Metals | Sydney | Jun 18, 2021 | 180 Days | | - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS | | | | | Heavy Metals (filtered) | Sydney | Jun 15, 2021 | 180 Days | | - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS | | | | Report Number: 802794-W Australia 6 Monterey Road Dandenong South VIC 3175 1 Phone: +61 3 8564 5000 L NATA # 1261 Melbourne Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 1/21 Smallwood Place Murarrie QLD 4172 5 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 46-48 Banksia Road Welshool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Moisture Set Aluminium Aluminium (filtered) 318001193 802794 Order No.: Report #: Phone: ADDITIONAL - CAPTAINS FLAT LEAD MANAGEMENT PLAN Site # 1254 & 14271 ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway North Sydney NSW 2060 318001193 Project Name: Project ID: Ramboll Australia Pty Ltd Company Name: Address: PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 Jun 15, 2021 3:39 AM Stephen Maxwell Jun 18, 2021 3 Day Contact Name: Received: **Priority:** Due: Eurofins Analytical Services Manager: Andrew Black Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271 Sydney Laboratory - NATA Site # 18217 × × × Brisbane Laboratory - NATA Site # 20794 Perth Laboratory - NATA Site # 23736 Mayfield Laboratory - NATA Site # 25079 External Laboratory Sample ID Sample Date Matrix Sampling Time Water Water Jun 03, 2021 Jun 03, 2021 > SW2 SW3 SW4 SW5 SW6 > > 15 9 SW1 å × × × × × × × × × S21-Jn27503 S21-Jn27504 S21-Jn27505 S21-Jn27506 LAB ID Water Water Water Water Jun 03, 2021 Jun 03, 2021 Jun 03, 2021 Jun 03, 2021 Eurofins Environment Testing Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 × × S21-Jn27510 Water Jun 03, 2021 Jun 03, 2021 Jun 03, 2021 SW8 SW7 SW9 Water Water S21-Jn27511 S21-Jn27508 S21-Jn27509 S21-Jn27507 Page 4 of 14 Australia ## **Environment Testing** ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 6 Monterey Road Dandenong South VIC 3175 1Phone: +61 3 8564 5000 NATA # 1261 P Site # 1254 & 14271 Melbourne Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +617 3902 4600 NATA # 1261 Site # 20794 Report #: Phone: ADDITIONAL - CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Box 60 Wickham 2293 Phone: +61'2 4968 8448 NATA # 1261 Site # 25079 Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** Received: Priority: Due: Jun 15, 2021 3:39 AM Jun 18, 2021 3 Day Contact Name: Stephen Maxwell | Moisture Set | | × | | | | | | | | | | | × | × | × | × | × | |----------------------|---|---------------------------------------|---|--------------------------------------|---|----------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | Aluminium (filtered) | | × | | | | | × | × | × | × | × | × | | | | | | | Aluminium | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | | | | | | | | S21-Jn27512 | S21-Jn27513 | S21-Jn27514 | S21-Jn27515 | S21-Jn27516 | S21-Jn27517 | S21-Jn27518 | S21-Jn27519 | S21-Jn27520 | S21-Jn27521 | S21-Jn27522 | | | | | | | | | Water | Water | Water | Water | Water | Water | Soil | Soil | Soil | Soil | Soil | | Sample Detail | e # 1254 & 14 | 18217 | # 20794 | 3736 | # 25079 | | | | | | | | | | | | | | σ | ry - NATA Sit | NATA Site # | - NATA Site | IATA Site # 23 | - NATA Site # | | Jun 03, 2021 | | Melbourne Laboratory - NATA Site # 1254 & 14271 | Sydney Laboratory - NATA Site # 18217 | Brisbane Laboratory - NATA Site # 20794 | Perth Laboratory - NATA Site # 23736 | Mayfield Laboratory - NATA Site # 25079 | External Laboratory | SW10 | SW11 | SW12 | SW13 | SW14 | SW15 | SED1 | SED2 | SED3 | SED4 | SED5 | | | Melbo | Sydn | Brisb | Perth | Mayfi | Exter | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 6 Monterey Road U Dandenong South VIC 3175 16 Phone : +61 3 8564 5000 L NATA # 1261 PIS Site # 1254 & 14271 N Melbourne Sydney Unit F3, Building F 11 S 16 Mars Road M Lane Cove West NSW 2066 P Phone : +612 9900 8400 N NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +617 3902 4600 NATA # 1261 Site # 20794 318001193 Order No.: 802794 Report #: Phone: Fax: ADDITIONAL - CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Auckland**35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 New Zealand Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Box 60 Wickham 2293 Phone: +61'2 4968 8448 NATA # 1261 Site # 25079 Received: Priority: Due: Jun 15, 2021 3:39 AM Jun 18, 2021 3 Day Contact Name: Stephen Maxwell | Moisture Set | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | |----------------------|---|---------------------------------------|---|--------------------------------------|---|----------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | Aluminium (filtered) | | × | | | | | | | | | | | | | | | | | Aluminium | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | Sample Detail | | | | | | | S21-Jn27523 | S21-Jn27524 | S21-Jn27525 | S21-Jn27526 | S21-Jn27527 | S21-Jn27528 | S21-Jn27529 | S21-Jn27530 | S21-Jn27531 | S21-Jn27532 | S21-Jn27533 | | | 71 | | | | | | Soil | | # 1254 & 142 | 8217 | 20794 | 36 | 25079 | | | | | | | | | | | | | | | ry - NATA Site | NATA Site #1 | - NATA Site | IATA Site # 237 | - NATA Site # | | Jun 03, 2021 | | Melbourne Laboratory - NATA Site # 1254 & 14271 | Sydney Laboratory - NATA Site # 18217 | Brisbane Laboratory - NATA Site # 20794 | Perth Laboratory - NATA Site # 23736 | Mayfield Laboratory - NATA Site # 25079 | External Laboratory | SED6 | SED7 | SED8 | SED9 | SED10 | SED11 | SED12 | SED13 | SED14 | SED15 | QA35 | | | Melbo | Sydn | Brisb | Perth | Mayfi | Exter | 21 | 22 | 23 | | | | | | | | 31 | # **New Zealand** Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Perth 46-48 Banksia Road Weisnpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 1/21 Smallwood Place Murarrie QLD 4172 5 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Lane Cove West NSW 2066 Phone: +612 9900 8400 NATA# 1261 Site# 18217 Sydney Unit F3, Building F 16 Mars Road 6 Monterey Road Dandenong South VIC 3175 1Phone: +61 3 8564 5000 NATA # 1261 P **Environment Testing** eurofins ... Australia Melbourne Site
1254 & 14271 ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079 Jun 15, 2021 3:39 AM Jun 18, 2021 3 Day Received: Priority: Due: 318001193 802794 Order No.: Report #: Phone: ADDITIONAL - CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: Contact Name: Stephen Maxwell Eurofins Analytical Services Manager: Andrew Black ### × × × × × Moisture Set × × × Aluminium (filtered) × × × × × × × × Aluminium S21-Jn27536 S21-Jn27538 S21-Jn27543 S21-Jn27544 S21-Jn27535 S21-Jn27539 S21-Jn27540 S21-Jn27541 S21-Jn27542 S21-Jn27534 S21-Jn27537 Water Water Water Water Water Soil Soil Soil Soil Soil Melbourne Laboratory - NATA Site # 1254 & 14271 Sample Detail Brisbane Laboratory - NATA Site # 20794 Mayfield Laboratory - NATA Site # 25079 Sydney Laboratory - NATA Site # 18217 Perth Laboratory - NATA Site # 23736 Jun 03, 2021 External Laboratory QA35 QA02 QA03 QA04 QA06 QA01 QA05 R02 R03 R04 R01 32 34 33 35 36 38 39 40 37 Australia 6 Monterey Road Dandenong South VIC 3175 1Phone: +61 3 8564 5000 NATA # 1261 P Melbourne Sydney Unit F3, Building F 16 Mars Road 1/21 Smallwood Place Murarrie QLD 4172 5 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 **New Zealand** Lane Cove West NSW 2066 Phone: +612 9900 8400 NATA# 1261 Site# 18217 Site # 1254 & 14271 ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 318001193 Order No.: 802794 Report #: Phone: PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079 Received: Perth 46-48 Banksia Road Weisnpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Jun 15, 2021 3:39 AM Jun 18, 2021 Due: Contact Name: Priority: 3 Day Stephen Maxwell Eurofins Analytical Services Manager: Andrew Black ADDITIONAL - CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: Moisture Set Aluminium Aluminium (filtered) Sample Detail × × × Melbourne Laboratory - NATA Site # 1254 & 14271 Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217 Perth Laboratory - NATA Site # 23736 Mayfield Laboratory - NATA Site # 25079 Jun 03, 2021 External Laboratory QA07 QA08 43 44 45 46 47 48 49 50 51 52 Jun 03, 2021 × × × × × × × × × × × S21-Jn27545 S21-Jn27546 S21-Jn27547 S21-Jn27548 > Jun 03, 2021 Jun 03, 2021 Jun 03, 2021 > > QA09 QA10 QA11 **QA12** Soil Soil Soil Soil Jun 03, 2021 Jun 03, 2021 × × × × S21-Jn27550 S21-Jn27549 Soil Soil Soil Soil Soil Jun 03, 2021 Jun 03, 2021 Jun 03, 2021 QA13 QA14 QA15 QA16 S21-Jn27555 S21-Jn27552 S21-Jn27553 S21-Jn27554 S21-Jn27551 Soil × Jun 03, 2021 QA17 Page 8 of 14 ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 Australia 6 Monterey Road Dandenong South VIC 3175 1Phone: +61 3 8564 5000 NATA # 1261 P Site # 1254 & 14271 Melbourne Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +617 3902 4600 NATA # 1261 Site # 20794 318001193 802794 Order No.: Report #: Phone: ADDITIONAL - CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Box 60 Wickham 2293 Phone: +61'2 4968 8448 NATA # 1261 Site # 25079 Contact Name: Received: Priority: Due: Jun 15, 2021 3:39 AM Jun 18, 2021 3 Day Stephen Maxwell **Eurofins Analytical Services Manager: Andrew Black** | Moisture Set | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | |----------------------|---|---------------------------------------|---|--------------------------------------|---|---------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | Aluminium (filtered) | | × | | | | | | | | | | | | | | | | | Aluminium | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | | | | | | | | S21-Jn27556 | S21-Jn27557 | S21-Jn27558 | S21-Jn27559 | S21-Jn27560 | S21-Jn27561 | S21-Jn27562 | S21-Jn27563 | S21-Jn27564 | S21-Jn27565 | S21-Jn27566 | | Detail | 4 & 14271 | | 4 | | | | Soil | Sample Detail | Melbourne Laboratory - NATA Site # 1254 & 14271 | Sydney Laboratory - NATA Site # 18217 | Brisbane Laboratory - NATA Site # 20794 | Perth Laboratory - NATA Site # 23736 | Mayfield Laboratory - NATA Site # 25079 | , | Jun 03, 2021 | | ourne Laborato | ney Laboratory | bane Laborator | h Laboratory - N | field Laboratory | External Laboratory | QA18 | QA19 | QA20 | QA21 | QA22 | QA23 | QA24 | QA25 | QA26 | QA27 | QA28 | | | Melb | Sydr | Brisl | Pert | May | Exte | 54 | 22 | 99 | 22 | 28 | 29 | 09 | 61 | 62 | 63 | 64 | Australia eurofins 💸 **Environment Testing** ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 6 Monterey Road Dandenong South VIC 3175 16 Phone : +61 3 8564 5000 Lt NATA # 1261 Site # 1254 & 14271 N Melbourne Sydney Unit F3, Building F 11 5 16 Mars Road M Lane Cove West NSW 2066 P Phone : +612 9900 8400 N NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +617 3902 4600 NATA # 1261 Site # 20794 Phone: Fax: Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Po Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** Jun 15, 2021 3:39 AM Jun 18, 2021 Received: Priority: Due: Stephen Maxwell 3 Day Contact Name: **Eurofins Analytical Services Manager: Andrew Black** | Moisture Set | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | |----------------------|---|---------------------------------------|---|--------------------------------------|---|----------------------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------| | Aluminium (filtered) | | × | | | | | | | | | | | | | | | | | Aluminium | | × | | | | | × | × | × | × | × | × | × | × | × | × | × | | | | | | | | | S21-Jn27567 | S21-Jn27568 | S21-Jn27569 | S21-Jn27570 | S21-Jn27571 | S21-Jn27572 | S21-Jn27575 | S21-Jn27576 | S21-Jn27577 | S21-Jn27578 | S21-Jn27579 | | | 1271 | | | | | | Soil | Sample Detail | Melbourne Laboratory - NATA Site # 1254 & 14271 | te # 18217 | Site # 20794 | # 23736 | ite # 25079 | |)21 |)21 |)21 | 2021 | 121 | 121 | 121 | 2021 |)21 |)21 | 121 | | | ory - NATA | - NATA Sit | y - NATA S | ATA Site | - NATA S | | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 20 | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 20 | Jun 03, 2021 | Jun 03, 2021 | Jun 03, 2021 | | | ourne Laborato | Sydney Laboratory - NATA Site # 18217 | Brisbane Laboratory - NATA Site # 20794 | Perth Laboratory - NATA Site # 23736 | Mayfield Laboratory - NATA Site # 25079 | External Laboratory | QA29 | QA30 | QA31 | QA32 | QA33 | QA34 | QA37 | QA38 | QA39 | QA40 | QA41 | | | Melb | Sydn | Brisk | Perth | Mayf | Exte | 65 | 99 | 29 | 89 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 9 16 80 **Test Counts** Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Box 60 Wrickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Perth 46-48 Banksia Road Weisnpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 **New Zealand** **Environment Testing** eurofins eurofins Australia 6 Monterey Road Dandenong South VIC 3175 1Phone: +61 3 8564 5000 NATA # 1261 P Melbourne Sydney Unit F3, Building F 16 Mars Road Brisbane 1/21 Smallwood Place Murarine QLD 4172 S Phone: +617 3902 4600 NATA# 1261 Site # 20794 Lane Cove West NSW 2066 Phone: +612 9900 8400 NATA # 1261 Site # 18217 Site # 1254 & 14271 ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 Order No.: 318001193 802794 Report #: Phone: ADDITIONAL - CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: Contact Name: Received: Priority: Due: Jun 15, 2021 3:39 AM Jun 18, 2021 3 Day Stephen Maxwell Eurofins Analytical Services Manager: Andrew Black × × × × × × Moisture Set × Aluminium (filtered) × × Aluminium S21-Jn27583 S21-Jn27581 S21-Jn27582 S21-Jn27580 S21-Jn27584 Soil Soil Soil Soil Soil Melbourne Laboratory - NATA Site # 1254 & 14271 Sample Detail Brisbane Laboratory - NATA Site # 20794 Mayfield Laboratory - NATA Site # 25079 Sydney Laboratory - NATA Site # 18217 Perth Laboratory -
NATA Site # 23736 Jun 03, 2021 External Laboratory QA43 QA44 76 QA42 80 QA46 QA45 78 29 # **Internal Quality Control Review and Glossary** ### General - Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request. - 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated. - 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated. - 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences. - 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds - 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise. - 7. Samples were analysed on an 'as received' basis. - 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results. - 9. This report replaces any interim results previously issued. ## **Holding Times** Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001). For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control. For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD ### Units mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre **ppm:** Parts per million **ppb:** Parts per billion %: Percentage org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres ## **Terms** Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis. LOR Limit of Reporting SPIKE Addition of the analyte to the sample and reported as percentage recovery. RPD Relative Percent Difference between two Duplicate pieces of analysis. LCS Laboratory Control Sample - reported as percent recovery. CRM Certified Reference Material - reported as percent recovery. Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water. Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery. **Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show comparison. USEPA United States Environmental Protection Agency APHA American Public Health Association TCLP Toxicity Characteristic Leaching Procedure COC Chain of Custody SRA Sample Receipt Advice QSM US Department of Defense Quality Systems Manual Version 5.3 CP Client Parent - QC was performed on samples pertaining to this report NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within. TEQ Toxic Equivalency Quotient # QC - Acceptance Criteria RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable: Results <10 times the LOR : No Limit Results between 10-20 times the LOR: RPD must lie between 0-50% Results >20 times the LOR : RPD must lie between 0-30% Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected. WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA # **QC Data General Comments** - 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided. - 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples. - 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS. - 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike. - 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report. - 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt. - 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte. - 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS. - 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample. 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data. # **Quality Control Results** | Test | | | Units | Result 1 | | | Acceptance
Limits | Pass
Limits | Qualifying
Code | |----------------------|---------------|--------------|-------|----------|----------|-----|----------------------|----------------|--------------------| | Method Blank | | | | | | | | | | | Heavy Metals | | | | | | | | | | | Aluminium | | | mg/L | < 0.05 | | | 0.05 | Pass | | | Aluminium (filtered) | | | mg/L | < 0.05 | | | 0.05 | Pass | | | LCS - % Recovery | | | | | | | | | | | Heavy Metals | | | | | | | | | | | Aluminium | | | % | 86 | | | 80-120 | Pass | | | Aluminium (filtered) | | | % | 87 | | | 80-120 | Pass | | | Test | Lab Sample ID | QA
Source | Units | Result 1 | | | Acceptance
Limits | Pass
Limits | Qualifying
Code | | Spike - % Recovery | | | | | | | | | | | Heavy Metals | | | | Result 1 | | | | | | | Aluminium (filtered) | S21-Jn23394 | NCP | % | 82 | | | 75-125 | Pass | | | Spike - % Recovery | | | | | | | | | | | Heavy Metals | | | | Result 1 | | | | | | | Aluminium | S21-Jn27534 | CP | % | 118 | | | 75-125 | Pass | | | Spike - % Recovery | | | | | | | | | | | Heavy Metals | | | | Result 1 | | | | | | | Aluminium | S21-Jn27536 | CP | % | 90 | | | 75-125 | Pass | | | Test | Lab Sample ID | QA
Source | Units | Result 1 | | | Acceptance
Limits | Pass
Limits | Qualifying
Code | | Duplicate | | | | | , | | | | | | Heavy Metals | | | | Result 1 | Result 2 | RPD | | | | | Aluminium | S21-Jn27503 | CP | mg/L | 0.33 | 0.36 | 7.0 | 30% | Pass | | | Aluminium (filtered) | S21-Jn27503 | CP | mg/L | 0.09 | 0.09 | 2.0 | 30% | Pass | | | Duplicate | | | | | | | | | | | Heavy Metals | | | | Result 1 | Result 2 | RPD | | | | | Aluminium (filtered) | S21-Jn27513 | CP | mg/L | 0.16 | 0.18 | 12 | 30% | Pass | | | Duplicate | | | | | , , | | | | | | Heavy Metals | | | | Result 1 | Result 2 | RPD | | | | | Aluminium | S21-Jn27517 | CP | mg/L | 0.21 | 0.18 | 14 | 30% | Pass | | | Duplicate | | | | | , | | | | | | Heavy Metals | | | | Result 1 | Result 2 | RPD | | | | | Aluminium | S21-Jn27535 | CP | mg/L | < 0.05 | < 0.05 | <1 | 30% | Pass | | Report Number: 802794-W ## Comments # Sample Integrity Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No # Authorised by: Andrew Black Analytical Services Manager John Nguyen Senior Analyst-Metal (NSW) Glenn Jackson General Manager Final Report - this report replaces any previously issued Report - Indicates Not Requested - * Indicates NATA accreditation does not cover the performance of this service Measurement uncertainty of test data is available on request or please click here. Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received. Report Number: 802794-W **Envirolab Services Pty Ltd** ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au # **CERTIFICATE OF ANALYSIS 271012** | Client Details | | |----------------|-------------------------------------| | Client | Ramboll Australia Pty Ltd | | Attention | Stephen Maxwell | | Address |
PO Box 560, North Sydney, NSW, 2060 | | Sample Details | | |--------------------------------------|---| | Your Reference | 318001193, Captains Flat Lead Management Plan | | Number of Samples | 1 Soil, 1 Water | | Date samples received | 07/06/2021 | | Date completed instructions received | 07/06/2021 | # **Analysis Details** Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. Please refer to the last page of this report for any comments relating to the results. | Report Details | | | | | | |--|------------|--|--|--|--| | Date results requested by | 15/06/2021 | | | | | | Date of Issue | 15/06/2021 | | | | | | NATA Accreditation Number 2901. This document shall not be reproduced except in full. | | | | | | | Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with * | | | | | | **Results Approved By** Giovanni Agosti, Group Technical Manager Hannah Nguyen, Senior Chemist Thomas Beenie, Lab Technician **Authorised By** Nancy Zhang, Laboratory Manager | Acid Extractractable metals in soil | | | |-------------------------------------|-------|------------| | Our Reference | | 271012-1 | | Your Reference | UNITS | QA36 | | Date Sampled | | 03/06/2021 | | Type of sample | | Soil | | Date prepared | - | 15/06/2021 | | Date analysed | - | 15/06/2021 | | Arsenic | mg/kg | 31 | | Barium | mg/kg | 30 | | Cadmium | mg/kg | <0.4 | | Chromium | mg/kg | 3 | | Cobalt | mg/kg | <1 | | Copper | mg/kg | 200 | | Iron | mg/kg | 4,400 | | Lead | mg/kg | 1,300 | | Manganese | mg/kg | 30 | | Mercury | mg/kg | 0.4 | | Molybdenum | mg/kg | <1 | | Nickel | mg/kg | 1 | | Selenium | mg/kg | <12 | | Titanium | mg/kg | 24 | | Zinc | mg/kg | 480 | | Aluminium | mg/kg | 230 | | Moisture | | | |----------------|-------|------------| | Our Reference | | 271012-1 | | Your Reference | UNITS | QA36 | | Date Sampled | | 03/06/2021 | | Type of sample | | Soil | | Date prepared | - | 08/06/2021 | | Date analysed | - | 09/06/2021 | | Moisture | % | 33 | | All metals in water-dissolved | | | |-------------------------------|-------|------------| | Our Reference | | 271012-2 | | Your Reference | UNITS | QA36 | | Date Sampled | | 03/06/2021 | | Type of sample | | Water | | Date prepared | - | 08/06/2021 | | Date analysed | - | 08/06/2021 | | Arsenic-Dissolved | μg/L | 6 | | Barium-Dissolved | μg/L | 6 | | Cadmium-Dissolved | μg/L | 100 | | Cobalt-Dissolved | μg/L | 67 | | Chromium-Dissolved | μg/L | <1 | | Copper-Dissolved | μg/L | 240 | | Iron-Dissolved | μg/L | 170,000 | | Mercury-Dissolved | μg/L | <0.05 | | Manganese-Dissolved | μg/L | 11,000 | | Molybdenum-Dissolved | μg/L | <1 | | Nickel-Dissolved | μg/L | 47 | | Lead-Dissolved | μg/L | 1,400 | | Selenium-Dissolved | μg/L | <1 | | Titanium-Dissolved | μg/L | <1 | | Zinc-Dissolved | μg/L | 140,000 | | Aluminium-Dissolved | μg/L | 16,000 | | All metals in water - total | | | |-----------------------------|-------|------------| | Our Reference | | 271012-2 | | Your Reference | UNITS | QA36 | | Date Sampled | | 03/06/2021 | | Type of sample | | Water | | Date prepared | - | 10/06/2021 | | Date analysed | - | 10/06/2021 | | Arsenic-Total | μg/L | 11 | | Barium-Total | μg/L | 9 | | Cadmium-Total | μg/L | 120 | | Cobalt-Total | μg/L | 90 | | Chromium-Total | μg/L | <1 | | Copper-Total | μg/L | 330 | | Iron-Total | μg/L | 160,000 | | Mercury-Total | μg/L | <0.05 | | Manganese-Total | μg/L | 11,000 | | Molybdenum-Total | μg/L | <1 | | Nickel-Total | μg/L | 66 | | Lead-Total | μg/L | 1,300 | | Selenium-Total | μg/L | 2 | | Titanium-Total | μg/L | 1.1 | | Zinc-Total | μg/L | 130,000 | | Aluminium-Total | μg/L | 14,000 | | Method ID | Methodology Summary | |------------|---| | Inorg-008 | Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours. | | | | | Metals-020 | Determination of various metals by ICP-AES. | | Metals-021 | Determination of Mercury by Cold Vapour AAS. | | Metals-022 | Determination of various metals by ICP-MS. | Envirolab Reference: 271012 Revision No: R00 Page | 6 of 12 | QUALITY C | ONTROL: Acid Ex | tractracta | ble metals in soil | | | Du | plicate | | Spike Rec | overy % | |------------------|-----------------|------------|--------------------|------------|------|------|---------|------|------------|---------| | Test Description | Units | PQL | Method | Blank | # | Base | Dup. | RPD | LCS-1 | [NT] | | Date prepared | - | | | 15/06/2021 | [NT] | | [NT] | [NT] | 15/06/2021 | | | Date analysed | - | | | 15/06/2021 | [NT] | | [NT] | [NT] | 15/06/2021 | | | Arsenic | mg/kg | 4 | Metals-020 | <4 | [NT] | | [NT] | [NT] | 94 | | | Barium | mg/kg | 1 | Metals-020 | <1 | [NT] | | [NT] | [NT] | 104 | | | Cadmium | mg/kg | 0.4 | Metals-020 | <0.4 | [NT] | | [NT] | [NT] | 89 | | | Chromium | mg/kg | 1 | Metals-020 | <1 | [NT] | | [NT] | [NT] | 105 | | | Cobalt | mg/kg | 1 | Metals-020 | <1 | [NT] | | [NT] | [NT] | 92 | | | Copper | mg/kg | 1 | Metals-020 | <1 | [NT] | | [NT] | [NT] | 93 | | | Iron | mg/kg | 10 | Metals-020 | <10 | [NT] | | [NT] | [NT] | 114 | | | Lead | mg/kg | 1 | Metals-020 | <1 | [NT] | | [NT] | [NT] | 99 | | | Manganese | mg/kg | 1 | Metals-020 | <1 | [NT] | | [NT] | [NT] | 98 | | | Mercury | mg/kg | 0.1 | Metals-021 | <0.1 | [NT] | | [NT] | [NT] | 114 | | | Molybdenum | mg/kg | 1 | Metals-020 | <1 | [NT] | | [NT] | [NT] | 95 | | | Nickel | mg/kg | 1 | Metals-020 | <1 | [NT] | | [NT] | [NT] | 93 | | | Selenium | mg/kg | 2 | Metals-020 | <2 | [NT] | | [NT] | [NT] | 90 | | | Titanium | mg/kg | 1 | Metals-020 | <1 | [NT] | | [NT] | [NT] | 97 | | | Zinc | mg/kg | 1 | Metals-020 | <1 | [NT] | | [NT] | [NT] | 97 | | | Aluminium | mg/kg | 10 | Metals-020 | <10 | [NT] | | [NT] | [NT] | 101 | | | QUALITY CO | NTROL: All m | etals in w | ater-dissolved | | | Du | plicate | | Spike Rec | overy % | |----------------------|--------------|------------|----------------|------------|------|------|---------|------|------------|---------| | Test Description | Units | PQL | Method | Blank | # | Base | Dup. | RPD | LCS-W1 | [NT] | | Date prepared | - | | | 09/06/2021 | [NT] | | [NT] | [NT] | 09/06/2021 | | | Date analysed | - | | | 09/06/2021 | [NT] | | [NT] | [NT] | 09/06/2021 | | | Arsenic-Dissolved | μg/L | 1 | Metals-022 | <1 | [NT] | | [NT] | [NT] | 99 | | | Barium-Dissolved | μg/L | 1 | Metals-022 | <1 | [NT] | | [NT] | [NT] | 103 | | | Cadmium-Dissolved | μg/L | 0.1 | Metals-022 | <0.1 | [NT] | | [NT] | [NT] | 100 | | | Cobalt-Dissolved | μg/L | 1 | Metals-022 | <1 | [NT] | | [NT] | [NT] | 97 | | | Chromium-Dissolved | μg/L | 1 | Metals-022 | <1 | [NT] | | [NT] | [NT] | 98 | | | Copper-Dissolved | μg/L | 1 | Metals-022 | <1 | [NT] | | [NT] | [NT] | 99 | | | Iron-Dissolved | μg/L | 10 | Metals-022 | <10 | [NT] | | [NT] | [NT] | 101 | | | Mercury-Dissolved | μg/L | 0.05 | Metals-021 | <0.05 | [NT] | | [NT] | [NT] | 95 | | | Manganese-Dissolved | μg/L | 5 | Metals-022 | <5 | [NT] | | [NT] | [NT] | 98 | | | Molybdenum-Dissolved | μg/L | 1 | Metals-022 | <1 | [NT] | | [NT] | [NT] | 100 | | | Nickel-Dissolved | μg/L | 1 | Metals-022 | <1 | [NT] | | [NT] | [NT] | 100 | | | Lead-Dissolved | μg/L | 1 | Metals-022 | <1 | [NT] | | [NT] | [NT] | 99 | | | Selenium-Dissolved | μg/L | 1 | Metals-022 | <1 | [NT] | | [NT] | [NT] | 97 | | | Titanium-Dissolved | μg/L | 1 | Metals-022 | <1 | [NT] | | [NT] | [NT] | 102 | | | Zinc-Dissolved | μg/L | 1 | Metals-022 | <1 | [NT] | | [NT] | [NT] | 114 | | | Aluminium-Dissolved | μg/L | 10 | Metals-022 | <10 | [NT] | | [NT] | [NT] | 96 | | Envirolab Reference: 271012 Revision No: R00 | QUALIT | Y CONTROL: All | metals in | water - total | | | Du | plicate | | Spike Red | covery % | |------------------|----------------|-----------|---------------|------------|------|------|---------|------|------------|----------| | Test Description | Units | PQL | Method | Blank | # | Base | Dup. | RPD | LCS-W1 | [NT] | | Date prepared | - | | | 09/06/2021 | [NT] | | [NT] | [NT] | 09/06/2021 | | | Date analysed | - | | | 09/06/2021 | [NT] | | [NT] | [NT] | 09/06/2021 | | | Arsenic-Total | μg/L | 1 | Metals-022 | <1 | [NT] | | [NT] | [NT] | 109 | | | Barium-Total | μg/L | 1 | Metals-022 | <1 | [NT] | | [NT] | [NT] | 117 | | | Cadmium-Total | μg/L | 0.1 | Metals-022 | <0.1 | [NT] | | [NT] | [NT] | 111 | | | Cobalt-Total | μg/L | 1 | Metals-022 | <1 | [NT] | | [NT] | [NT] | 105 | | | Chromium-Total | μg/L | 1 | Metals-022 | <1 | [NT] | | [NT] | [NT] | 105 | | | Copper-Total | μg/L | 1 | Metals-022 | <1 | [NT] | | [NT] | [NT] | 104 | | | Iron-Total | μg/L | 10 | Metals-022 | <10 | [NT] | | [NT] | [NT] | 112 | | | Mercury-Total | μg/L | 0.05 | Metals-021 | <0.05 | [NT] | | [NT] | [NT] | 96 | | | Manganese-Total | μg/L | 5 | Metals-022 | <5 | [NT] | | [NT] | [NT] | 109 | | | Molybdenum-Total | μg/L | 1 | Metals-022 | <1 | [NT] | | [NT] | [NT] | 111 | | | Nickel-Total | μg/L | 1 | Metals-022 | <1 | [NT] | | [NT] | [NT] | 107 | | | Lead-Total | μg/L | 1 | Metals-022 | <1 | [NT] | | [NT] | [NT] | 110 | | | Selenium-Total | μg/L | 1 | Metals-022 | <1 | [NT] | | [NT] | [NT] | 107 | | | Titanium-Total | μg/L | 1 | Metals-022 | <1 | [NT] | | [NT] | [NT] | 114 | | | Zinc-Total | μg/L | 1 | Metals-022 | <1 | [NT] | | [NT] | [NT] | 117 | | | Aluminium-Total | μg/L | 10 | Metals-022 | <10 | [NT] | | [NT] | [NT] | 118 | | | Result Definiti | ons | |-----------------|---| | NT | Not tested | | NA | Test not required | | INS | Insufficient sample for this test | | PQL | Practical Quantitation Limit | | < | Less than | | > | Greater
than | | RPD | Relative Percent Difference | | LCS | Laboratory Control Sample | | NS | Not specified | | NEPM | National Environmental Protection Measure | | NR | Not Reported | | Quality Contro | ol Definitions | |------------------------------------|--| | Blank | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. | | Duplicate | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable. | | Matrix Spike | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. | | LCS (Laboratory
Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample. | | Surrogate Spike | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples. | Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011. The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016 Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2 # **Laboratory Acceptance Criteria** Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria. Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction. Spikes for Physical and Aggregate Tests are not applicable. For VOCs in water samples, three vials are required for duplicate or spike analysis. Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable. In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols. When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable. Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached. Measurement Uncertainty estimates are available for most tests upon request. Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default. Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012. # **Report Comments** The PQL for Se has been raised due to interferences from analytes (other than those being tested) in sample 271012-1. Envirolab Reference: 271012 Page | 12 of 12 R00 Revision No: Ramboll Environ Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060 NATA Accredited Accreditation Number 1261 Site Number 25079 Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates. Attention: Stephen Maxwell Report 804715-W Project name CAPTAINS FLAT LEAD MANAGEMENT PLAN Project ID 318001193 Received Date Jun 22, 2021 | Client Sample ID | | | GW1 | GW2 | GW3 | GW4 | |--------------------------------|--------|------|--------------|--------------|--------------|--------------| | Sample Matrix | | | Water | Water | Water | Water | | Eurofins Sample No. | | | N21-Jn42606 | N21-Jn42607 | N21-Jn42608 | N21-Jn42609 | | Date Sampled | | | Jun 18, 2021 | Jun 18, 2021 | Jun 18, 2021 | Jun 18, 2021 | | Test/Reference | LOR | Unit | | | | | | | | | | | | | | Hardness mg equivalent CaCO3/L | 1 | mg/L | 460 | 280 | 840 | 260 | | Heavy Metals | | | | | | | | Aluminium (filtered) | 0.05 | mg/L | 0.13 | 0.35 | 15 | < 0.05 | | Arsenic (filtered) | 0.001 | mg/L | 0.002 | 0.001 | 0.007 | 0.001 | | Barium (filtered) | 0.02 | mg/L | 0.07 | 0.04 | 0.05 | 0.05 | | Cadmium (filtered) | 0.0002 | mg/L | 0.049 | 0.090 | 0.17 | 0.0009 | | Chromium (filtered) | 0.001 | mg/L | < 0.001 | < 0.001 | 0.007 | 0.002 | | Cobalt (filtered) | 0.001 | mg/L | 0.32 | 0.16 | 0.19 | 0.011 | | Copper (filtered) | 0.001 | mg/L | 0.083 | 0.097 | 2.7 | 0.007 | | Iron (filtered) | 0.05 | mg/L | < 0.05 | 0.06 | 7.2 | < 0.05 | | Lead (filtered) | 0.001 | mg/L | 0.41 | 0.017 | 0.049 | < 0.001 | | Manganese (filtered) | 0.005 | mg/L | 11 | 8.4 | 7.5 | 0.87 | | Mercury (filtered) | 0.0001 | mg/L | < 0.0001 | < 0.0001 | < 0.0001 | < 0.0001 | | Molybdenum (filtered) | 0.005 | mg/L | < 0.005 | < 0.005 | < 0.005 | < 0.005 | | Nickel (filtered) | 0.001 | mg/L | 0.14 | 0.11 | 0.18 | 0.014 | | Selenium (filtered) | 0.001 | mg/L | 0.005 | 0.004 | 0.009 | 0.003 | | Titanium (filtered) | 0.005 | mg/L | < 0.005 | < 0.005 | < 0.005 | < 0.005 | | Zinc (filtered) | 0.005 | mg/L | 23 | 37 | 47 | 0.48 | | Alkali Metals | | | | | | | | Calcium | 0.5 | mg/L | 56 | 64 | 140 | 62 | | Magnesium | 0.5 | mg/L | 77 | 30 | 120 | 26 | | Client Sample ID
Sample Matrix | | | GW5
Water | GW6
Water | GW9_S
Water | GW9_D
Water | |-----------------------------------|--------|------|--------------|--------------|----------------|----------------| | Eurofins Sample No. | | | N21-Jn42610 | N21-Jn42611 | N21-Jn42612 | N21-Jn42613 | | Date Sampled | | | Jun 18, 2021 | Jun 18, 2021 | Jun 18, 2021 | Jun 18, 2021 | | Test/Reference | LOR | Unit | | | | | | | | | | | | | | Hardness mg equivalent CaCO3/L | 1 | mg/L | 140 | 180 | 1700 | 1600 | | Heavy Metals | | | | | | | | Aluminium (filtered) | 0.05 | mg/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Arsenic (filtered) | 0.001 | mg/L | 0.001 | 0.001 | 0.001 | 0.002 | | Barium (filtered) | 0.02 | mg/L | 0.04 | 0.03 | 0.04 | 0.02 | | Cadmium (filtered) | 0.0002 | mg/L | 0.0003 | < 0.0002 | < 0.0002 | 0.0003 | | Client Sample ID
Sample Matrix | | | GW5
Water | GW6
Water | GW9_S
Water | GW9_D
Water | |-----------------------------------|--------|------|--------------|--------------|----------------|----------------| | Eurofins Sample No. | | | N21-Jn42610 | N21-Jn42611 | N21-Jn42612 | N21-Jn42613 | | Date Sampled | | | Jun 18, 2021 | Jun 18, 2021 | Jun 18, 2021 | Jun 18, 2021 | | Test/Reference | LOR | Unit | | | | | | Heavy Metals | | | | | | | | Chromium (filtered) | 0.001 | mg/L | < 0.001 | 0.001 | < 0.001 | < 0.001 | | Cobalt (filtered) | 0.001 | mg/L | 0.007 | < 0.001 | 0.014 | 0.013 | | Copper (filtered) | 0.001 | mg/L | 0.003 | 0.004 | 0.002 | 0.002 | | Iron (filtered) | 0.05 | mg/L | < 0.05 | < 0.05 | < 0.05 | 0.44 | | Lead (filtered) | 0.001 | mg/L | < 0.001 | < 0.001 | < 0.001 | 0.001 | | Manganese (filtered) | 0.005 | mg/L | 1.7 | 0.095 | 20 | 9.7 | | Mercury (filtered) | 0.0001 | mg/L | < 0.0001 | < 0.0001 | < 0.0001 | < 0.0001 | | Molybdenum (filtered) | 0.005 | mg/L | < 0.005 | < 0.005 | 0.007 | < 0.005 | | Nickel (filtered) | 0.001 | mg/L | 0.003 | 0.004 | 0.015 | 0.005 | | Selenium (filtered) | 0.001 | mg/L | < 0.001 | 0.001 | 0.005 | 0.005 | | Titanium (filtered) | 0.005 | mg/L | < 0.005 | < 0.005 | < 0.005 | < 0.005 | | Zinc (filtered) | 0.005 | mg/L | 0.081 | 0.067 | 0.22 | 0.53 | | Alkali Metals | | | | | | | | Calcium | 0.5 | mg/L | 28 | 49 | 450 | 460 | | Magnesium | 0.5 | mg/L | 17 | 13 | 130 | 110 | | Client Sample ID | | | GW10 | D01_180621 | T01_180621 | R10 | |--------------------------------|----------|------|--------------|--------------|--------------|--------------| | Sample Matrix | | | Water | Water | Water | Water | | Eurofins Sample No. | | | N21-Jn42614 | N21-Jn42615 | N21-Jn42616 | N21-Jn42617 | | Date
Sampled | | | Jun 18, 2021 | Jun 18, 2021 | Jun 18, 2021 | Jun 16, 2021 | | Test/Reference | LOR | Unit | | | | | | | <u>'</u> | | | | | | | Hardness mg equivalent CaCO3/L | 1 | mg/L | 440 | - | - | - | | Heavy Metals | | | | | | | | Aluminium | 0.05 | mg/L | - | - | - | < 0.05 | | Aluminium (filtered) | 0.05 | mg/L | < 0.05 | 0.38 | 0.36 | - | | Arsenic | 0.001 | mg/L | - | - | - | < 0.001 | | Arsenic (filtered) | 0.001 | mg/L | 0.001 | < 0.001 | 0.001 | - | | Barium | 0.02 | mg/L | - | - | - | < 0.02 | | Barium (filtered) | 0.02 | mg/L | 0.05 | 0.04 | 0.03 | - | | Cadmium | 0.0002 | mg/L | - | - | - | < 0.0002 | | Cadmium (filtered) | 0.0002 | mg/L | 0.0097 | 0.092 | 0.089 | - | | Chromium | 0.001 | mg/L | - | - | - | < 0.001 | | Chromium (filtered) | 0.001 | mg/L | < 0.001 | < 0.001 | < 0.001 | - | | Cobalt | 0.001 | mg/L | - | - | - | < 0.001 | | Cobalt (filtered) | 0.001 | mg/L | 0.078 | 0.17 | 0.17 | - | | Copper | 0.001 | mg/L | - | - | - | < 0.001 | | Copper (filtered) | 0.001 | mg/L | 0.004 | 0.10 | 0.10 | - | | Iron | 0.05 | mg/L | - | - | - | < 0.05 | | Iron (filtered) | 0.05 | mg/L | < 0.05 | 0.05 | < 0.05 | - | | Lead | 0.001 | mg/L | - | - | - | < 0.001 | | Lead (filtered) | 0.001 | mg/L | < 0.001 | 0.015 | 0.016 | - | | Manganese | 0.005 | mg/L | - | - | - | < 0.005 | | Manganese (filtered) | 0.005 | mg/L | 1.6 | 8.7 | 8.6 | - | | Mercury | 0.0001 | mg/L | - | - | - | < 0.0001 | | Mercury (filtered) | 0.0001 | mg/L | < 0.0001 | < 0.0001 | < 0.0001 | - | | Molybdenum | 0.005 | mg/L | - | - | - | < 0.005 | | Molybdenum (filtered) | 0.005 | mg/L | 0.007 | < 0.005 | < 0.005 | - | | Client Sample ID
Sample Matrix | | | GW10
Water | D01_180621
Water | T01_180621
Water | R10
Water | |-----------------------------------|-------|------|---------------|---------------------|---------------------|--------------| | Eurofins Sample No. | | | N21-Jn42614 | N21-Jn42615 | N21-Jn42616 | N21-Jn42617 | | Date Sampled | | | Jun 18, 2021 | Jun 18, 2021 | Jun 18, 2021 | Jun 16, 2021 | | Test/Reference | LOR | Unit | | | | | | Heavy Metals | | | | | | | | Nickel | 0.001 | mg/L | - | - | - | < 0.001 | | Nickel (filtered) | 0.001 | mg/L | 0.12 | 0.12 | 0.12 | - | | Selenium | 0.001 | mg/L | - | - | - | < 0.001 | | Selenium (filtered) | 0.001 | mg/L | 0.004 | 0.001 | < 0.001 | - | | Titanium | 0.005 | mg/L | - | - | - | < 0.005 | | Titanium (filtered) | 0.005 | mg/L | < 0.005 | < 0.005 | < 0.005 | - | | Zinc | 0.005 | mg/L | - | - | - | < 0.005 | | Zinc (filtered) | 0.005 | mg/L | 0.98 | 37 | 36 | - | | Alkali Metals | | | | | | | | Calcium | 0.5 | mg/L | 54 | - | - | - | | Magnesium | 0.5 | mg/L | 75 | - | - | - | | Client Sample ID | | | R11 | R12 | |---------------------|--------|------|--------------|--------------| | Sample Matrix | | | Water | Water | | Eurofins Sample No. | | | N21-Jn42618 | N21-Jn42619 | | Date Sampled | | | Jun 17, 2021 | Jun 18, 2021 | | Test/Reference | LOR | Unit | | | | Heavy Metals | | | | | | Aluminium | 0.05 | mg/L | < 0.05 | < 0.05 | | Arsenic | 0.001 | mg/L | < 0.001 | < 0.001 | | Barium | 0.02 | mg/L | < 0.02 | < 0.02 | | Cadmium | 0.0002 | mg/L | < 0.0002 | < 0.0002 | | Chromium | 0.001 | mg/L | < 0.001 | < 0.001 | | Cobalt | 0.001 | mg/L | < 0.001 | < 0.001 | | Copper | 0.001 | mg/L | 0.001 | < 0.001 | | Iron | 0.05 | mg/L | < 0.05 | < 0.05 | | Lead | 0.001 | mg/L | < 0.001 | < 0.001 | | Manganese | 0.005 | mg/L | < 0.005 | < 0.005 | | Mercury | 0.0001 | mg/L | < 0.0001 | < 0.0001 | | Molybdenum | 0.005 | mg/L | < 0.005 | < 0.005 | | Nickel | 0.001 | mg/L | < 0.001 | < 0.001 | | Selenium | 0.001 | mg/L | < 0.001 | < 0.001 | | Titanium | 0.005 | mg/L | < 0.005 | < 0.005 | | Zinc | 0.005 | mg/L | < 0.005 | < 0.005 | # Sample History Where samples are submitted/analysed over several days, the last date of extraction is reported. If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time. | Description | Testing Site | Extracted | Holding Time | |--|--------------|--------------|---------------------| | Hardness Set | | | | | Hardness mg equivalent CaCO3/L | Sydney | Jun 29, 2021 | 28 Days | | - Method: E020.1 Hardness in water | | | | | Alkali Metals | Sydney | Jun 29, 2021 | 180 Days | | - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS | | | | | Heavy Metals | Sydney | Jun 29, 2021 | 180 Days | | - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS | | | | | Heavy Metals (filtered) | Sydney | Jun 23, 2021 | 180 Days | | - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS | | | | | Mobil Metals : Metals M15 | Sydney | Jun 23, 2021 | 28 Days | | - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS | | | | Australia 6 Monterey Road Ul Dandenong South VIC 3175 16 Phone : +613 8564 5000 Ls NATA # 1261 Pl Site # 1254 N Melbourne ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +617 3902 4600 NATA # 1261 Site # 20794 318001193 804715 Order No.: Report #: Phone: Fax: CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Box 60 Wickham 2293 Phone: +61'2 4968 8448 NATA # 1261 Site # 25079 Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** Contact Name: Priority: Due: Jun 29, 2021 Jun 22, 2021 10:05 AM Received: 5 Day Stephen Maxwell Eurofins Analytical Services Manager: Andrew Black | Hardness Set | | × | | | | | | × | × | × | × | × | × | × | × | × | |-----------------------|---|---------------------------------------|---|--------------------------------------|---|----------------------------|------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | Zinc (filtered) | | × | | | | | | × | × | × | × | × | × | × | × | × | | Titanium (filtered) | | × | | | | | | × | × | × | × | × | × | × | × | × | | Selenium (filtered) | | × | | | | | | × | × | × | × | × | × | × | × | × | | Nickel (filtered) | | X | | | | | | × | × | × | × | × | × | × | × | × | | Molybdenum (filtered) | | × | | | | | | × | × | × | × | X | X | × | × | × | | Mercury (filtered) | | × | | | | | | × | × | × | × | × | × | × | × | × | | Manganese (filtered) | | × | | | | | | × | × | × | × | × | × | × | × | × | | Lead (filtered) | | × | | | | | | × | × | × | × | × | × | × | × | × | | Iron (filtered) | | × | | | | | | × | × | × | × | × | × | × | × | × | | Copper (filtered) | | × | | | | | | × | × | × | × | × | × | × | × | × | | Cobalt (filtered) | | × | | | | | | × | × | × | × | × | × | × | × | × | | Chromium (filtered) | | × | | | | | | × | × | × | × | × | × | × | × | × | | Cadmium (filtered) | | × | | | | | | × | × | × | × | × | × | × | × | × | | Barium (filtered) | | × | | | | | | × | × | × | × | × | × | × | × | × | | Arsenic (filtered) | | × | | | | | | × | × | × | × | × | × | × | × | × | | Aluminium (filtered) | | × | | | | | | × | × | × | × | × | × | × | × | × | | | | | | | | | LAB ID | N21-Jn42606 | N21-Jn42607 | N21-Jn42608 | N21-Jn42609 | N21-Jn42610 | N21-Jn42611 | N21-Jn42612 | N21-Jn42613 | N21-Jn42614 | | | | | | | | | Matrix | Water | Sample Detail | # 1254 | 8217 | 20794 | 36 | 25079 | | Sampling
Time | | | | | | | | | | | San | | NATA Site #1 | - NATA Site # | ATA Site # 237 | - NATA Site # | | Sample Date | Jun 18, 2021 | | Melbourne Laboratory - NATA Site # 1254 | Sydney Laboratory - NATA Site # 18217 | Brisbane Laboratory - NATA Site # 20794 | Perth Laboratory - NATA Site # 23736 | Mayfield Laboratory - NATA Site # 25079 | External Laboratory | Sample ID | GW1 | GW2 | GW3 | GW4 | GW5 | GW6 | GW9_S | GW9_D | GW10 | | | Melbo | Sydn | Brisb | Perth | Mayfi | Exter | No | _ | 7 | 8 | 4 | 2 | 9 | 7 | ∞ | 6 | # eurofins ... # **Environment Testing** ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 6 Monterey Road U Dandenong South VIC 3175 11 Phone: +613 8564 5000 L NATA # 1261 N Site # 1254 N N Melbourne Australia Sydney Unit F3, Building F 16 Mars Road Brisbane 1/21 Smallwood Place 1/21 Smallwood Place Murarie QLD 4172 5 Phone: +617 3902 4600 NATA# 1261 Site # 20794 Perth 46-48 Banksia Road Welshool WA 6106 Phone: +618 9251 9600 NATA # 1261 Site # 23736 318001193 Order No.: Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Report #: Phone: CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Box 60 Wrickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Received: Priority: Due: 5 Day Jun 22, 2021 10:05 AM Jun 29, 2021 Stephen Maxwell Contact Name: Eurofins Analytical Services Manager: Andrew Black 0 Hardness Set 4 × × × × × × Zinc (filtered) 4 × × × Titanium (filtered) 4 × × × × Selenium (filtered) × × × × 4 Nickel (filtered) 4 × Molybdenum (filtered) × × × × × 4 × × × × × × Mercury (filtered) 4 × × × × × \times Manganese
(filtered) 4 × × Lead (filtered) × \times \times 4 × × × × × Iron (filtered) × 4 Copper (filtered) 4 × × × × × Cobalt (filtered) × × × × 4 × × Chromium (filtered) 4 × × × × × Cadmium (filtered) 4 × × × × × Barium (filtered) × 4 × × × Arsenic (filtered) × × × 4 × × × × × × Aluminium (filtered) N21-Jn42615 N21-Jn42616 N21-Jn42618 N21-Jn42619 N21-Jn42617 Water Water Water Water Water Sample Detail Melbourne Laboratory - NATA Site # 1254 Brisbane Laboratory - NATA Site # 20794 Mayfield Laboratory - NATA Site # 25079 Sydney Laboratory - NATA Site # 18217 Perth Laboratory - NATA Site # 23736 Jun 18, 2021 Jun 18, 2021 Jun 16, 2021 Jun 17, 2021 Jun 18, 2021 External Laboratory 10 D01 180621 T01 180621 R10 7 1 14 R12 7 **Test Counts** Date Reported:Jun 29, 2021 Date Reported:Jun 29, 2021 # **Internal Quality Control Review and Glossary** ### General - Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request. - 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated. - 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated. - 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences. - 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds - 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise. - 7. Samples were analysed on an 'as received' basis. - 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results. - 9. This report replaces any interim results previously issued. # **Holding Times** Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001). For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control. For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD ### Units mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre **ppm:** Parts per million **ppb:** Parts per billion %: Percentage org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres ### **Terms** Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis. LOR Limit of Reporting SPIKE Addition of the analyte to the sample and reported as percentage recovery. RPD Relative Percent Difference between two Duplicate pieces of analysis. LCS Laboratory Control Sample - reported as percent recovery. CRM Certified Reference Material - reported as percent recovery. Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water. Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery. **Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show comparison. USEPA United States Environmental Protection Agency APHA American Public Health Association TCLP Toxicity Characteristic Leaching Procedure COC Chain of Custody SRA Sample Receipt Advice QSM US Department of Defense Quality Systems Manual Version 5.3 CP Client Parent - QC was performed on samples pertaining to this report NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within. TEQ Toxic Equivalency Quotient # QC - Acceptance Criteria RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable: Results <10 times the LOR : No Limit Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$ Results >20 times the LOR : RPD must lie between 0-30% Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected. WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA # **QC Data General Comments** - 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided. - 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples. - 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS. - 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike. - 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report. - 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt. - 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte. - 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS. - 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample. 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data. # **Quality Control Results** | Test | Units | Result 1 | Acceptance
Limits | Pass
Limits | Qualifying
Code | |-----------------------|-------|----------|----------------------|--|--------------------| | Method Blank | | | | | | | Heavy Metals | | | | | | | Aluminium | mg/L | < 0.05 | 0.05 | Pass | | | Aluminium (filtered) | mg/L | < 0.05 | 0.05 | Pass | | | Arsenic | mg/L | < 0.001 | 0.001 | Pass | | | Arsenic (filtered) | mg/L | < 0.001 | 0.001 | Pass | | | Barium | mg/L | < 0.02 | 0.02 | Pass | | | Barium (filtered) | mg/L | < 0.02 | 0.02 | Pass | | | Cadmium | mg/L | < 0.0002 | 0.0002 | Pass | | | Cadmium (filtered) | mg/L | < 0.0002 | 0.0002 | Pass | | | Chromium | mg/L | < 0.001 | 0.001 | Pass | | | Chromium (filtered) | mg/L | < 0.001 | 0.001 | Pass | | | Cobalt | mg/L | < 0.001 | 0.001 | Pass | | | Cobalt (filtered) | mg/L | < 0.001 | 0.001 | Pass | | | Copper | mg/L | < 0.001 | 0.001 | Pass | | | Copper (filtered) | mg/L | < 0.001 | 0.001 | Pass | | | Iron | mg/L | < 0.05 | 0.05 | Pass | | | Iron (filtered) | mg/L | < 0.05 | 0.05 | Pass | | | Lead | mg/L | < 0.001 | 0.001 | Pass | | | Lead (filtered) | mg/L | < 0.001 | 0.001 | Pass | | | Manganese | mg/L | < 0.005 | 0.005 | Pass | | | Manganese (filtered) | mg/L | < 0.005 | 0.005 | Pass | | | Mercury | mg/L | < 0.0001 | 0.0001 | Pass | | | Mercury (filtered) | mg/L | < 0.0001 | 0.0001 | Pass | | | Molybdenum | mg/L | < 0.005 | 0.005 | Pass | | | Molybdenum (filtered) | mg/L | < 0.005 | 0.005 | Pass | | | Nickel | mg/L | < 0.003 | 0.003 | Pass | | | Nickel (filtered) | mg/L | < 0.001 | 0.001 | Pass | | | Selenium | | < 0.001 | 0.001 | Pass | | | | mg/L | | | † | | | Selenium (filtered) | mg/L | < 0.001 | 0.001 | Pass | | | Titanium | mg/L | < 0.005 | 0.005 | Pass | | | Titanium (filtered) | mg/L | < 0.005 | 0.005 | Pass | | | Zinc | mg/L | < 0.005 | 0.005 | Pass | | | Method Blank | | T T | | T | | | Alkali Metals | | | | _ | | | Calcium | mg/L | < 0.5 | 0.5 | Pass | | | Magnesium | mg/L | < 0.5 | 0.5 | Pass | | | LCS - % Recovery | | Т | | | | | Heavy Metals | | | | | | | Aluminium | % | 95 | 80-120 | Pass | | | Aluminium (filtered) | % | 96 | 80-120 | Pass | | | Arsenic | % | 101 | 80-120 | Pass | | | Arsenic (filtered) | % | 97 | 80-120 | Pass | | | Barium | % | 101 | 80-120 | Pass | | | Barium (filtered) | % | 95 | 80-120 | Pass | | | Cadmium | % | 106 | 80-120 | Pass | | | Cadmium (filtered) | % | 98 | 80-120 | Pass | | | Chromium | % | 98 | 80-120 | Pass | | | Chromium (filtered) | % | 95 | 80-120 | Pass | | | Cobalt | % | 98 | 80-120 | Pass | | | Cobalt (filtered) | % | 98 | 80-120 | Pass | | | Copper | % | 94 | 80-120 | Pass | | | 1 | Гest | | Units | Result 1 | Acceptance
Limits | Pass
Limits | Qualifying
Code | |---|--
---|-----------------------|--|--|------------------------------------|--------------------| | Copper (filtered) | | | % | 97 | 80-120 | Pass | 3000 | | Iron | - | | % | 93 | 80-120 | Pass | | | Iron (filtered) | - | | % | 95 | 80-120 | Pass | | | Lead | | | % | 97 | 80-120 | Pass | | | Lead (filtered) | | | % | 96 | 80-120 | Pass | | | Manganese | | | % | 96 | 80-120 | Pass | | | Manganese (filtered) | | | % | 100 | 80-120 | Pass | | | Mercury | | | % | 81 | 80-120 | Pass | | | Mercury (filtered) | | | % | 96 | 80-120 | Pass | | | Molybdenum | | | % | 112 | 80-120 | Pass | | | Molybdenum (filtered) | | | % | 111 | 80-120 | Pass | | | Nickel | | | % | 96 | 80-120 | Pass | | | Nickel (filtered) | | | % | 94 | 80-120 | Pass | | | Selenium | | | % | 104 | 80-120 | Pass | | | Selenium (filtered) | | | % | 102 | 80-120 | Pass | | | Titanium | | | % | 97 | 80-120 | Pass | | | Titanium (filtered) | | | % | 96 | 80-120 | Pass | | | Zinc | | | % | 96 | 80-120 | Pass | | | Zinc (filtered) | | | % | 94 | 80-120 | Pass | | | LCS - % Recovery | | | | | | | | | Alkali Metals | | | | | | | | | Calcium | | | % | 94 | 80-120 | Pass | | | Magnesium | - | | % | 102 | 80-120 | Pass | | | Test | Lab Sample ID | QA
Source | Units | Result 1 | Acceptance
Limits | Pass
Limits | Qualifying
Code | | Spike - % Recovery | | | | | | | | | Heavy Metals | | | | Result 1 | | | | | Aluminium (filtered) | S21-Jn43929 | NCP | % | 88 | 75-125 | Pass | | | Arsenic (filtered) | S21-Jn43929 | NCP | % | 94 | 75-125 | Pass | | | Barium (filtered) | S21-Jn43929 | NCP | % | 91 | 75-125 | Pass | | | Cadmium (filtered) | S21-Jn43929 | NCP | % | 96 | 75-125 | Pass | | | Chromium (filtered) | S21-Jn43929 | NCP | % | 86 | 75-125 | Pass | | | Cobalt (filtered) | S21-Jn43929 | NCP | % | 87 | 75-125 | Pass | | | Copper (filtered) | S21-Jn43929 | NCP | % | 86 | 75-125 | Pass | | | Iron (filtered) | S21-Jn43929 | NCP | % | 92 | 75-125 | Pass | | | Lead (filtered) | S21-Jn43929 | NCP | % | 89 | 75-125 | Pass | | | Manganese (filtered) | S21-Jn41118 | NCP | % | 88 | 75-125 | Pass | | | Mercury (filtered) | S21-Jn43929 | NCP | % | 87 | 75-125 | Pass | | | Molybdenum (filtered) | S21-Jn43929 | NCP | % | 118 | 75-125 | Pass | | | Nickel (filtered) | S21-Jn43929 | NCP | % | 85 | 75-125 | Pass | | | Selenium (filtered) | | | | | | Door | | | Selemani (iliterea) | S21-Jn43929 | NCP | % | 100 | 75-125 | Pass | | | Titanium (filtered) | S21-Jn43929
S21-Jn43929 | NCP
NCP | % | 100
88 | 75-125
75-125 | Pass | | | | <u> </u> | | | | | | | | Titanium (filtered) | S21-Jn43929 | NCP | % | 88 | 75-125 | Pass | | | Titanium (filtered) Zinc (filtered) | S21-Jn43929 | NCP | % | 88 | 75-125 | Pass | | | Titanium (filtered) Zinc (filtered) Spike - % Recovery | S21-Jn43929 | NCP | % | 88
95 | 75-125 | Pass | | | Titanium (filtered) Zinc (filtered) Spike - % Recovery Alkali Metals | S21-Jn43929
S21-Jn43929 | NCP
NCP | %
% | 88
95
Result 1 | 75-125
75-125 | Pass
Pass | | | Titanium (filtered) Zinc (filtered) Spike - % Recovery Alkali Metals Calcium | S21-Jn43929
S21-Jn43929
S21-Jn43945 | NCP
NCP | %
%
% | 88
95
Result 1
90 | 75-125
75-125
75-125 | Pass Pass Pass | | | Titanium (filtered) Zinc (filtered) Spike - % Recovery Alkali Metals Calcium Magnesium | S21-Jn43929
S21-Jn43929
S21-Jn43945 | NCP
NCP | %
%
% | 88
95
Result 1
90 | 75-125
75-125
75-125 | Pass Pass Pass | | | Titanium (filtered) Zinc (filtered) Spike - % Recovery Alkali Metals Calcium Magnesium Spike - % Recovery | S21-Jn43929
S21-Jn43929
S21-Jn43945 | NCP
NCP | %
%
% | 88
95
Result 1
90
96 | 75-125
75-125
75-125 | Pass Pass Pass | | | Titanium (filtered) Zinc (filtered) Spike - % Recovery Alkali Metals Calcium Magnesium Spike - % Recovery Heavy Metals | S21-Jn43929
S21-Jn43929
S21-Jn43945
S21-Jn43945 | NCP
NCP
NCP | %
%
% | 88
95
Result 1
90
96
Result 1 | 75-125
75-125
75-125
75-125 | Pass Pass Pass Pass | | | Titanium (filtered) Zinc (filtered) Spike - % Recovery Alkali Metals Calcium Magnesium Spike - % Recovery Heavy Metals Aluminium | S21-Jn43929
S21-Jn43929
S21-Jn43945
S21-Jn43945 | NCP
NCP
NCP
NCP | %
%
%
% | Result 1 90 96 Result 1 93 | 75-125
75-125
75-125
75-125
75-125 | Pass Pass Pass Pass Pass | | | Titanium (filtered) Zinc (filtered) Spike - % Recovery Alkali Metals Calcium Magnesium Spike - % Recovery Heavy Metals Aluminium Arsenic | S21-Jn43929
S21-Jn43929
S21-Jn43945
S21-Jn43945
S21-Jn43945
S21-Jn43945 | NCP
NCP
NCP
NCP | %
%
%
% | Result 1 90 96 Result 1 93 105 | 75-125
75-125
75-125
75-125
75-125
75-125 | Pass Pass Pass Pass Pass Pass | | | Titanium (filtered) Zinc (filtered) Spike - % Recovery Alkali Metals Calcium Magnesium Spike - % Recovery Heavy Metals Aluminium Arsenic Barium | \$21-Jn43929
\$21-Jn43929
\$21-Jn43945
\$21-Jn43945
\$21-Jn43945
\$21-Jn43945
\$21-Jn43945 | NCP
NCP
NCP
NCP
NCP
NCP
NCP | %
%
%
%
% | Result 1 90 96 Result 1 93 105 95 | 75-125
75-125
75-125
75-125
75-125
75-125
75-125 | Pass Pass Pass Pass Pass Pass Pass | | Report Number: 804715-W | Test | Lab Sample ID | QA
Source | Units | Result 1 | | | Acceptance
Limits | Pass
Limits | Qualifying
Code | |-----------------------|---------------|--------------|-------|----------|----------|-----|----------------------|----------------|--| | Copper | S21-Jn43945 | NCP | % | 91 | | | 75-125 | Pass | | | Iron | S21-Jn43945 | NCP | % | 91 | | | 75-125 | Pass | | | Lead | S21-Jn43945 | NCP | % | 92 | | | 75-125 | Pass | | | Manganese | S21-Jn43945 | NCP | % | 97 | | | 75-125 | Pass | | | Mercury | S21-Jn43945 | NCP | % | 81 | | | 75-125 | Pass | | | Molybdenum | S21-Jn43945 | NCP | % | 112 | | | 75-125 | Pass | | | Nickel | S21-Jn43945 | NCP | % | 94 | | | 75-125 | Pass | | | Selenium | S21-Jn43945 | NCP | % | 104 | | | 75-125 | Pass | | | Titanium | S21-Jn43945 | NCP | % | 101 | | | 75-125 | Pass | | | Zinc | S21-Jn43945 | NCP | % | 94 | | | 75-125 | Pass | | | Test | Lab Sample ID | QA
Source | Units | Result 1 | | | Acceptance
Limits | Pass
Limits | Qualifying
Code | | Duplicate | | | | T | I I | | T | | | | Heavy Metals | | | | Result 1 | Result 2 | RPD | | | | | Aluminium (filtered) | N21-Jn42606 | CP | mg/L | 0.13 | 0.13 | 3.0 | 30% | Pass | | | Arsenic (filtered) | N21-Jn42606 | CP | mg/L | 0.002 | < 0.001 | 57 | 30% | Fail | Q15 | | Barium (filtered) | N21-Jn42606 | CP | mg/L | 0.07 | 0.07 | 4.0 | 30% | Pass | | | Cadmium (filtered) | N21-Jn42606 | CP | mg/L | 0.049 | 0.049 | <1 | 30% | Pass | | | Chromium (filtered) | N21-Jn42606 | CP | mg/L | < 0.001 | < 0.001 | <1 | 30% | Pass | | | Cobalt (filtered) | N21-Jn42606 | CP | mg/L | 0.32 | 0.32 | 1.0 | 30% | Pass | | | Copper (filtered) | N21-Jn42606 | CP | mg/L | 0.083 | 0.084 | 1.0 | 30% | Pass | | | Iron (filtered) | N21-Jn42606 | CP | mg/L | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Lead (filtered) | N21-Jn42606 | CP | mg/L | 0.41 | 0.42 | 2.0 | 30% | Pass | | | Manganese (filtered) | N21-Jn42606 | CP | mg/L | 11 | 11 | 1.0 | 30% | Pass | | | Mercury (filtered) | N21-Jn42606 | CP | mg/L | < 0.0001 | < 0.0001 | <1 | 30% | Pass | | | Molybdenum (filtered) | N21-Jn42606 | CP | mg/L | < 0.005 | < 0.005 | <1 | 30% | Pass | | | Nickel (filtered) | N21-Jn42606 | CP | mg/L | 0.14 | 0.14 | 1.0 | 30% | Pass | | | Selenium (filtered) | N21-Jn42606 | CP | mg/L | 0.005 | 0.005 | 11 | 30% | Pass | | | Titanium (filtered) | N21-Jn42606 | CP | mg/L | < 0.005 | < 0.005 | <1 | 30% | Pass | | | Zinc (filtered) | S21-Jn42585 | NCP | mg/L | 0.008 | 0.012 | 45 | 30% | Fail | Q15 | | Duplicate | | | | | | | | | | | Heavy Metals | | | | Result 1 | Result 2 | RPD | | | | | Aluminium | N21-Jn42614 | CP | mg/L | 1.3 | 1.4 | 11 | 30% | Pass | | | Arsenic | N21-Jn42614 | CP | mg/L | 0.003 | 0.003 | 2.0 | 30% | Pass | | | Barium | N21-Jn42614 | CP | mg/L | 0.06 | 0.06 | 1.0 | 30% | Pass | | | Cadmium | N21-Jn42614 | CP | mg/L | 0.010 | 0.010 | <1 | 30% | Pass | | | Chromium | N21-Jn42614 | CP | mg/L | 0.002 | 0.002 | 4.0 | 30% | Pass | | | Cobalt | N21-Jn42614 | CP | mg/L | 0.086 | 0.087 | 1.0 | 30% | Pass | | | Copper | N21-Jn42614 | CP | mg/L | 0.007 | 0.007 | 6.0 | 30% | Pass | | | Iron | N21-Jn42614 | CP | mg/L | 1.7 | 2.0 | 17 | 30% | Pass | | | Lead | N21-Jn42614 | СР | mg/L | 0.013 | 0.014 | 12 | 30% | Pass | | | Manganese | N21-Jn42614 | CP | mg/L | 1.8 | 1.8 | 1.0 | 30% | Pass | | | Mercury | N21-Jn42614 | CP | mg/L | < 0.0001 | < 0.0001 | <1 | 30% | Pass | | | Molybdenum | N21-Jn42614 | CP | mg/L | 0.007 | 0.007 | 5.0 | 30% | Pass | | | Nickel | N21-Jn42614 | CP | mg/L | 0.13 | 0.13 | 1.0 | 30% | Pass | | | Selenium | N21-Jn42614 | CP | mg/L | 0.003 | 0.003 | 17 | 30% | Pass | | | Titanium | N21-Jn42614 | CP | mg/L | 0.017 | 0.017 | 1.0 | 30% | Pass | | | Zinc | N21-Jn42614 | CP | mg/L | 1.2 | 1.2 | 2.0 | 30% | Pass | | | Duplicate | | | | | | | | | | | Alkali Metals | | | | Result 1 | Result 2 | RPD | | | | | Calcium | N21-Jn42614 | CP | mg/L | 54 | 56 | 4.0 | 30% | Pass | | | Magnesium | N21-Jn42614 | CP | mg/L | 75 | 75 | <1 | 30% | Pass | | | Duplicate | | | | | | | | | | |--------------|-------------|-----|------|----------|----------|-----|-----|------|--| | Heavy Metals | | | | Result 1 | Result 2 | RPD | | | | | Aluminium | S21-Jn41834 | NCP | mg/L | 0.53 | 0.57 | 6.0 | 30% | Pass | | | Arsenic | S21-Jn41834 | NCP | mg/L | 0.003 | 0.003 | 7.0 | 30% | Pass | | | Barium | S21-Jn41834 | NCP | mg/L | 0.03 | 0.03 | 2.0 | 30% | Pass | | | Cadmium | S21-Jn41834 | NCP | mg/L | < 0.0002 | < 0.0002 | <1 | 30% | Pass | | | Chromium |
S21-Jn41834 | NCP | mg/L | 0.002 | 0.002 | 3.0 | 30% | Pass | | | Cobalt | S21-Jn41834 | NCP | mg/L | < 0.001 | < 0.001 | <1 | 30% | Pass | | | Copper | S21-Jn41834 | NCP | mg/L | 0.015 | 0.014 | 8.0 | 30% | Pass | | | Iron | S21-Jn41834 | NCP | mg/L | 0.79 | 0.82 | 3.0 | 30% | Pass | | | Lead | S21-Jn41834 | NCP | mg/L | 0.006 | 0.006 | 1.0 | 30% | Pass | | | Manganese | S21-Jn41834 | NCP | mg/L | 0.018 | 0.018 | 3.0 | 30% | Pass | | | Mercury | S21-Jn41834 | NCP | mg/L | < 0.0001 | < 0.0001 | <1 | 30% | Pass | | | Molybdenum | S21-Jn41834 | NCP | mg/L | < 0.005 | < 0.005 | <1 | 30% | Pass | | | Nickel | S21-Jn41834 | NCP | mg/L | 0.002 | 0.001 | 26 | 30% | Pass | | | Selenium | S21-Jn41834 | NCP | mg/L | < 0.001 | < 0.001 | <1 | 30% | Pass | | | Titanium | S21-Jn41834 | NCP | mg/L | 0.013 | 0.015 | 19 | 30% | Pass | | | Zinc | S21-Jn41834 | NCP | mg/L | 0.039 | 0.036 | 8.0 | 30% | Pass | | Report Number: 804715-W ## Comments # Sample Integrity Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used No Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No # **Qualifier Codes/Comments** Code Description Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report. # Authorised by: Andrew Black Analytical Services Manager John Nguyen Senior Analyst-Metal (NSW) Glenn Jackson General Manager Final Report - this report replaces any previously issued Report - Indicates Not Requested - * Indicates NATA accreditation does not cover the performance of this service Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$ Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received. Report Number: 804715-W Ramboll Environ Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060 NATA Accredited Accreditation Number 1261 Site Number 18217 Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection and proficiency testing scheme providers reports. Attention: Stephen Maxwell Report 803030-W Project name CAPTAIN FLAT LEAD MANAGEMENT PLAN Project ID 318001193 Received Date Jun 11, 2021 | Client Sample ID
Sample Matrix | | | R1
Water | R2
Water | R3
Water | | | |-----------------------------------|--------|------|--------------|--------------|--------------|--|--| | Eurofins Sample No. | | | S21-Jn29258 | S21-Jn29259 | S21-Jn29260 | | | | Date Sampled | | | Jun 07, 2021 | Jun 08, 2021 | Jun 10, 2021 | | | | Test/Reference | LOR | Unit | | | | | | | Heavy Metals | | | | | | | | | Arsenic | 0.001 | mg/L | < 0.001 | < 0.001 | < 0.001 | | | | Barium | 0.02 | mg/L | < 0.02 | < 0.02 | < 0.02 | | | | Cadmium | 0.0002 | mg/L | < 0.0002 | < 0.0002 | < 0.0002 | | | | Chromium | 0.001 | mg/L | 0.001 | 0.001 | < 0.001 | | | | Cobalt | 0.001 | mg/L | < 0.001 | < 0.001 | < 0.001 | | | | Copper | 0.001 | mg/L | 0.001 | < 0.001 | 0.001 | | | | Iron | 0.05 | mg/L | < 0.05 | < 0.05 | < 0.05 | | | | Lead | 0.001 | mg/L | < 0.001 | < 0.001 | < 0.001 | | | | Manganese | 0.005 | mg/L | < 0.005 | < 0.005 | < 0.005 | | | | Mercury | 0.0001 | mg/L | < 0.0001 | < 0.0001 | < 0.0001 | | | | Molybdenum | 0.005 | mg/L | < 0.005 | < 0.005 | < 0.005 | | | | Nickel | 0.001 | mg/L | < 0.001 | < 0.001 | < 0.001 | | | | Selenium | 0.001 | mg/L | < 0.001 | < 0.001 | < 0.001 | | | | Titanium | 0.005 | mg/L | < 0.005 | < 0.005 | < 0.005 | | | | Zinc | 0.005 | mg/L | < 0.005 | < 0.005 | < 0.005 | | | # Sample History Where samples are submitted/analysed over several days, the last date of extraction is reported. If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time. | Description | Testing Site | Extracted | Holding Time | |--|--------------|--------------|---------------------| | Metals M8 | Sydney | Jun 15, 2021 | 180 Days | | - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS | | | | | Heavy Metals | Sydney | Jun 16, 2021 | 180 Days | - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS Australia **Environment Testing** 6 Monterey Road Dandenong South VIC 3175 1 Phone: +61 3 8564 5000 L NATA # 1261 Melbourne Site # 1254 & 14271 ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway North Sydney NSW 2060 Ramboll Australia Pty Ltd Company Name: Address: Sydney Unit F3, Building F 16 Mars Road 1/21 Smallwood Place Murarrie QLD 4172 5 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 46-48 Banksia Road Welshool WA 6106 Phone: +618 9251 9600 NATA # 1261 Site # 23736 Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 318001193 Order No.: Report #: Phone: 803030 CAPTAIN FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Box 60 Wrickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Received: Contact Name: **Priority:** Due: P Jun 11, 2021 4:57 Jun 21, 2021 5 Day Stephen Maxwell Eurofins Analytical Services Manager: Andrew Black Metals M8 Titanium Selenium Molvbdenum Manganese Iron HOI D Cobalt Barium CANCELLED Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271 Sydney Laboratory - NATA Site # 18217 × × × × × × × × × Brisbane Laboratory - NATA Site # 20794 Mayfield Laboratory - NATA Site # 25079 Perth Laboratory - NATA Site # 23736 External Laboratory Sample Date Sampling Time Jun 08, 2021 Jun 07, 2021 Sample ID × × × × × × × × × × × × × × × × × × S21-Jn29258 LAB ID Matrix × × × × S21-Jn29259 S21-Jn29260 S21-Jn29261 × × × × × S21-Jn29262 S21-Jn29263 S21-Jn29264 × \times Water Water Jun 10, 2021 Jun 07, 2021 GW1 0.0 GW2 0.0 82 R3 Σ õ Water Soil Soil Soil Soil Jun 08, 2021 Jun 07, 2021 Jun 07, 2021 GW4 0.2 Eurofins Environment Testing Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 S21-Jn29265 S21-Jn29266 Soil Soil Jun 08, 2021 Jun 08, 2021 GW6 0.0 ∞ D2 5 15 ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 Melbourne Australia 6 Monterey Road Dandenong South VIC 3175 16 Phone : +61 3 8564 5000 Lt NATA # 1261 Site # 1254 & 14271 N Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +617 3902 4600 NATA # 1261 Site # 20794 Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Box 60 Wickham 2293 Phone: +61'2 4968 8448 NATA # 1261 Site # 25079 Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 **New Zealand** 318001193 Order No.: Report #: Phone: CAPTAIN FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: 803030 Received: Priority: Due: Jun 11, 2021 4:57 PM Jun 21, 2021 Contact Name: 5 Day Stephen Maxwell **Eurofins Analytical Services Manager: Andrew Black** | Metals M8 | | × | | | | | | | | | | | | | | |---------------|--|---------------------------------------|---|--------------------------------------|---|---------------------|--------------|--------------|--------------|---------------------|--------------|--------------------|--------------|----------------------|--------------| | Titanium | | × | | | | | | | | | | | | | | | Selenium | | × | | | | | | | | | | | | | | | Molybdenum | | × | | | | | | | | | | | | | | | Manganese | | × | | | | | | | | | | | | | | | Iron | | × | | | | | | | | | | | | | | | HOLD | | × | | | | | × | × | × | × | × | | × | × | × | | Cobalt | | × | | | | | | | | | | | | | | | CANCELLED | | × | | | | | | | | | | × | | | | | Barium | | × | S21-Jn29267 | S21-Jn29268 | S21-Jn29269 | S21-Jn29270 | S21-Jn29271 | S21-Jn29272 | S21-Jn29273 | S21-Jn29274 | S21-Jn29275 | | Sample Detail | | 8217 | 20794 | 36 | 25079 | | Soil | ια
Υ | Melbourne Laboratory - NATA Site # 1254 & 1427 | Sydney Laboratory - NATA Site # 18217 | Brisbane Laboratory - NATA Site # 20794 | Perth Laboratory - NATA Site # 23736 | Mayfield Laboratory - NATA Site # 25079 | ory | Jun 08, 2021 | Jun 08, 2021 | Jun 08, 2021 | Jun 10, 2021 | | | ourne Labor | ney Laborato | bane Laborat | h Laboratory | field Laborate | External Laboratory | GW7_0.2 | GW8_2.0 | D3 | SAQP11-
BH01_0.0 | D4 | SAQP11-
BH3_0.0 | D5 | SAQP11-
BH07_0.25 | SAQP11- | | | Melb | Sydr | Bris | Pert | May | Exte | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | ABN: 50
005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 6 Monterey Road Dandenong South VIC 3175 16 Phone : +61 3 8564 5000 La NATA # 1261 Ph Site # 1254 & 14271 NV Melbourne Australia Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +617 3902 4600 NATA # 1261 Site # 20794 318001193 Order No.: Phone: Fax: CAPTAIN FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079 Jun 11, 2021 4:57 PM Jun 21, 2021 Received: Priority: Due: 5 Day Stephen Maxwell Contact Name: | Andrew Black | |--------------| | Manager: | | Services | | Analytical | | Eurofins A | | | | | | Metals M8 | | × | | | | | | | | | | | | |---------------|---|---------------------|-----------------|--------------------------------------|---------------------|-------|---------------------|--------------------|--------------|---------------------|----------------------|--------------|---------------------| | Titanium | | × | | | | | | | | | | | | | Selenium | | × | | | | | | | | | | | | | Molybdenum | | × | | | | | | | | | | | | | Manganese | | × | | | | | | | | | | | | | Iron | | × | | | | | | | | | | | | | HOLD | | × | | | | | | × | × | × | × | × | × | | Cobalt | | × | | | | | | | | | | | | | CANCELLED | | × | | | | | | | | | | | | | Barium | | × | S21-Jn29275 | S21-Jn29276 | S21-Jn29277 | S21-Jn29278 | S21-Jn29279 | S21-Jn29280 | S21-Jn29281 | | | | | | | | | Soil | Sample Detail | # 1254 & 14; | 8217 | 20794 | 36 | 25079 | | | | | | | | | | Š | ry - NATA Site | - NATA Site # 18217 | / - NATA Site # | IATA Site # 237 | - NATA Site # 25079 | | Jun 10, 2021 | | Melbourne Laboratory - NATA Site # 1254 & 14271 | Sydney Laboratory - | | Perth Laboratory - NATA Site # 23736 | Mayfield Laboratory | | SAQP11-
BH10_0.0 | SAQP9-
BH03_0.0 | D6 | SAQP9-
BH04_0.25 | SAQP10-
BH02_0.25 | 2Q | SAQP10-
BH03_0.5 | | | Melb | Sydn | Brisk | Perth | Mayf | Exter | 18 | 19 | 20 | 21 | 22 | 23 | 24 | Australia 6 Monterey Road Dandenong South VIC 3175 16 Phone: +61 3 8564 5000 Lt NATA # 1261 Site # 1254 & 14271 N Melbourne ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone: +617 3902 4600 NATA # 1261 Site # 20794 318001193 803030 Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** Order No.: Report #: Phone: Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 CAPTAIN FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Box 60 Wickham 2293 Phone: +61'2 4968 8448 NATA # 1261 Site # 25079 Received: Due: Jun 11, 2021 4:57 PM Contact Name: Jun 21, 2021 5 Day Priority: Stephen Maxwell | 숭 | | |--------|--| | 38 | | | m | | | ≥ | | | dre | | | ũ | | | ⋖ | | | | | | g | | | ğ | | | _ | | | Ma | | | 98 | | | ಏ | | | > | | | Ser | | | a | | | g | | | Æic | | | a | | | 2 | | | 3 | | | fins | | | urofir | | | uro | | | Ш | Metals M8 Titanium Selenium Molybdenum Manganese Iron HOLD Cobalt CANCELLED Barium | Melbourne Laboratory - NATA Site # 1254 & 14271 | Laboratory - NATA Site # 18217 X X X X X X X X X X X X X X X X X X X | e Laboratory - NATA Site # 20794 | Perth Laboratory - NATA Site # 23736 | Laboratory - NATA Site # 25079 | | Jun 10, 2021 Soil S21-Jn29282 X | Jun 10, 2021 | QP13-
03_0.25 Jun 10, 2021 Soil S21-Jn29284 × | QP-
03_0.0 Jun 10, 2021 Soil S21-Jn29285 X | 3 1 3 24 3 3 3 3 3 3 3 | |--|---|--|----------------------------------|--------------------------------------|--------------------------------|----------------------------|---------------------------------------|------------------------|--|---|------------------------| | | Melbourne Labora | Sydney Laboratory - | Brisbane Laboratory | Perth Laboratory | Mayfield Laboratory | External Laboratory | 25 D8 | 26 SAQP13-
BH02 0.0 | 27 SAQP13-
BH03 0.25 | 28 SAQP-
BH03_0.0 | Test Counts | #### **Internal Quality Control Review and Glossary** #### General - Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request. - 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated. - 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated. - 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences. - 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds - 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise. - 7. Samples were analysed on an 'as received' basis. - 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results. - 9. This report replaces any interim results previously issued. #### **Holding Times** Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001). For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control. For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD #### Units mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres #### **Terms** Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis. LOR Limit of Reporting SPIKE Addition of the analyte to the sample and reported as percentage recovery. RPD Relative Percent Difference between two Duplicate pieces of analysis. LCS Laboratory Control Sample - reported as percent recovery. CRM Certified Reference Material - reported as percent recovery. Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water. Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery. **Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show comparison. USEPA United States Environmental Protection Agency APHA American Public Health Association TCLP Toxicity Characteristic Leaching Procedure COC Chain of Custody SRA Sample Receipt Advice QSM US Department of Defense Quality Systems Manual Version 5.3 CP Client Parent - QC was performed on samples pertaining to this report NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within. TEQ Toxic Equivalency Quotient #### QC - Acceptance Criteria RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable: Results <10 times the LOR : No Limit Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$ Results >20 times the LOR : RPD must lie between 0-30% Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected. WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA #### **QC Data General Comments** Date Reported: Jun 21, 2021 - 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided. - 2. Duplicate data shown within this report that states the word "BATCH" is a Batch
Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples. - 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS. - 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike. - 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report. - 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt. - 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte. - 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS. - 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample. 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data. #### **Quality Control Results** | Т | est | | Units | Result 1 | Acceptance
Limits | Pass
Limits | Qualifying
Code | |--------------------|---------------|--------------|--------------|-------------------|----------------------|----------------|--------------------| | Method Blank | | | | | | | | | Heavy Metals | | | | | | | | | Arsenic | | | mg/L | < 0.001 | 0.001 | Pass | | | Barium | | | mg/L | < 0.02 | 0.02 | Pass | | | Cadmium | | | mg/L | < 0.0002 | 0.0002 | Pass | | | Chromium | | | mg/L | < 0.001 | 0.001 | Pass | | | Cobalt | | | mg/L | < 0.001 | 0.001 | Pass | | | Copper | | | mg/L
mg/L | < 0.001
< 0.05 | 0.001 | Pass | | | Iron | on | | | | 0.05 | Pass | | | Lead | | mg/L | < 0.001 | 0.001 | Pass | | | | Manganese | | | mg/L | < 0.005 | 0.005 | Pass | | | Mercury | | | mg/L | < 0.0001 | 0.0001 | Pass | | | Molybdenum | | | mg/L | < 0.005 | 0.005 | Pass | | | Nickel | | | mg/L | < 0.001 | 0.001 | Pass | | | Selenium | | | mg/L | < 0.001 | 0.001 | Pass | | | Titanium | | | mg/L | < 0.005 | 0.005 | Pass | | | Zinc | | | mg/L | < 0.005 | 0.005 | Pass | | | LCS - % Recovery | | | | |
 | | | | Heavy Metals | | | | | | | | | Arsenic | | | % | 94 | 80-120 | Pass | | | Barium | | | % | 89 | 80-120 | Pass | | | Cadmium | | | % | 93 | 80-120 | Pass | | | Chromium | | | % | 99 | 80-120 | Pass | | | Cobalt | | | % | 94 | 80-120 | Pass | | | Copper | | | % | 96 | 80-120 | Pass | | | Iron | | | % | 97 | 80-120 | Pass | | | Lead | | | % | 100 | 80-120 | Pass | | | Manganese | | | % | 92 | 80-120 | Pass | | | Mercury | | | % | 103 | 80-120 | Pass | | | Molybdenum | | | % | 112 | 80-120 | Pass | | | Nickel | | | % | 97 | 80-120 | Pass | | | Selenium | | | % | 88 | 80-120 | Pass | | | Titanium | | | % | 94 | 80-120 | Pass | | | Zinc | | | % | 93 | 80-120 | Pass | | | Test | Lab Sample ID | QA
Source | Units | Result 1 | Acceptance
Limits | Pass
Limits | Qualifying
Code | | Spike - % Recovery | | | | <u> </u> | | | | | Heavy Metals | | 1 | | Result 1 | | | | | Arsenic | S21-Jn31317 | NCP | % | 100 | 75-125 | Pass | | | Barium | S21-Jn31317 | NCP | % | 84 | 75-125 | Pass | | | Cadmium | S21-Jn31317 | NCP | % | 100 | 75-125 | Pass | | | Chromium | S21-Jn31317 | NCP | % | 104 | 75-125 | Pass | | | Cobalt | S21-Jn31317 | NCP | % | 102 | 75-125 | Pass | | | Copper | S21-Jn31317 | NCP | % | 102 | 75-125 | Pass | | | Iron | S21-Jn31317 | NCP | % | 104 | 75-125 | Pass | | | Lead | S21-Jn31317 | NCP | % | 106 | 75-125 | Pass | | | Manganese | S21-Jn31317 | NCP | % | 96 | 75-125 | Pass | | | Mercury | S21-Jn31317 | NCP | % | 107 | 75-125 | Pass | | | Molybdenum | S21-Jn31317 | NCP | % | 115 | 75-125 | Pass | | | Nickel | S21-Jn31317 | NCP | % | 103 | 75-125 | Pass | | | Selenium | S21-Jn31317 | NCP | % | 93 | 75-125 | Pass | | | Titanium | S21-Jn31317 | NCP | % | 102 | 75-125 | Pass | | | Zinc | S21-Jn31317 | NCP | % | 97 | 75-125 | Pass | 1 | | Test | Lab Sample ID | QA
Source | Units | Result 1 | | | Acceptance
Limits | Pass
Limits | Qualifying
Code | |--------------|---------------|--------------|-------|----------|----------|-----|----------------------|----------------|--------------------| | Duplicate | | | | | | | | | | | Heavy Metals | | | | Result 1 | Result 2 | RPD | | | | | Arsenic | S21-Jn37297 | NCP | mg/L | 0.002 | 0.002 | 10 | 30% | Pass | | | Barium | S21-Jn37297 | NCP | mg/L | 0.13 | 0.13 | 2.0 | 30% | Pass | | | Cadmium | S21-Jn37297 | NCP | mg/L | < 0.0002 | < 0.0002 | <1 | 30% | Pass | | | Chromium | S21-Jn37297 | NCP | mg/L | 0.009 | 0.009 | 3.0 | 30% | Pass | | | Cobalt | S21-Jn37297 | NCP | mg/L | < 0.001 | < 0.001 | <1 | 30% | Pass | | | Copper | S21-Jn37297 | NCP | mg/L | 0.010 | 0.010 | <1 | 30% | Pass | | | Iron | S21-Jn37297 | NCP | mg/L | 0.37 | 0.38 | 2.0 | 30% | Pass | | | Lead | S21-Jn37297 | NCP | mg/L | 0.002 | 0.002 | 25 | 30% | Pass | | | Manganese | S21-Jn37297 | NCP | mg/L | 0.086 | 0.085 | 1.0 | 30% | Pass | | | Mercury | S21-Jn37297 | NCP | mg/L | < 0.0001 | < 0.0001 | <1 | 30% | Pass | | | Molybdenum | S21-Jn37297 | NCP | mg/L | 0.012 | 0.012 | 4.0 | 30% | Pass | | | Nickel | S21-Jn37297 | NCP | mg/L | 0.002 | 0.002 | 15 | 30% | Pass | | | Selenium | S21-Jn37297 | NCP | mg/L | 0.005 | 0.006 | 19 | 30% | Pass | | | Titanium | S21-Jn37297 | NCP | mg/L | < 0.005 | < 0.005 | <1 | 30% | Pass | | | Zinc | S21-Jn37297 | NCP | mg/L | 1.3 | 1.3 | 2.0 | 30% | Pass | | Report Number: 803030-W #### Comments #### Sample Integrity Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No #### Authorised by: Andrew Black Analytical Services Manager John Nguyen Senior Analyst-Metal (NSW) Glenn Jackson General Manager Final Report - this report replaces any previously issued Report - Indicates Not Requested - * Indicates NATA accreditation does not cover the performance of this service Measurement uncertainty of test data is available on request or please click here. Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received. Report Number: 803030-W Ramboll Environ Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060 NATA Accredited Accreditation Number 1261 Site Number 18217 Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates. Attention: Stephen Maxwell Report 811512-S Project name ADDITONAL CAPTAINS FLAT LEAD MANAGEMENT PLAN Project ID 318001193 Received Date Jul 19, 2021 | Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled | | | MS_VAC1
Dust
S21-JI34967
Jun 17, 2021 | MS_VAC2
Dust
S21-JI34968
Jun 17, 2021 | MS_VAC3
Dust
S21-JI34969
Jun 17, 2021 | |---|-----|-------|--|--|--| | Test/Reference | LOR | Unit | | | | | | | | | | | | Sulphur | 5 | mg/kg | 1000 | 1100 | 990 | | Heavy Metals | | | | | | | Lead | 5 | mg/kg | 360 | 270 | 300 | | Titanium | 10 | mg/kg | 170 | 180 | 150 | #### Sample History Where samples are submitted/analysed over several days, the last date of extraction is reported. If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time. | Description | Testing Site | Extracted | Holding Time | |---|--------------|--------------|---------------------| | Sulphur | Melbourne | Jul 20, 2021 | 7 Days | | - Method: LTM-MET-3010 Alkali Metals Sulfur Silicon and Phosphorus by ICP-AES | | | | | Heavy Metals | Sydney | Jul 23, 2021 | 180 Days | - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS Report Number: 811512-S Australia **Environment Testing** 6 Monterey Road Dandenong South VIC 3175 1Phone: +61 3 8564 5000 NATA # 1261 P Melbourne Site # 1254 ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway North Sydney NSW 2060 Ramboll Australia Pty Ltd Company Name: Address: Lane Cove West NSW 2066 Phone: +612 9900 8400 NATA # 1261 Site # 18217 Sydney Unit F3, Building F 16 Mars Road 1/21 Smallwood Place Murarrie QLD 4172 5 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 46-48 Banksia Road Weisnpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 811512
Order No.: Report #: Phone: Jul 19, 2021 9:32 AM Stephen Maxwell Jul 26, 2021 5 Day PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Contact Name: Received: Priority: Due: Eurofins Analytical Services Manager: Andrew Black Titanium ADDITONAL CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: က × × × Sulphur က × × × × Lead S21-JI34969 S21-JI34968 S21-JI34967 LAB ID Matrix Dust Dust Dust Sampling Time Sample Detail Melbourne Laboratory - NATA Site # 1254 Brisbane Laboratory - NATA Site # 20794 Mayfield Laboratory - NATA Site # 25079 Sydney Laboratory - NATA Site # 18217 Perth Laboratory - NATA Site # 23736 Sample Date Jun 17, 2021 Jun 17, 2021 Jun 17, 2021 External Laboratory Sample ID MS VAC2 MS VAC3 MS VAC1 **Test Counts** × × က × × å Page 3 of 6 #### **Internal Quality Control Review and Glossary** #### General - 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request. - 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated. - 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated. - 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences. - 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds. - 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise. - 7. Samples were analysed on an 'as received' basis. - 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results. - 9. This report replaces any interim results previously issued. #### **Holding Times** Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001). For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control. For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD #### Units mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre **ppm:** Parts per million **ppb:** Parts per billion %: Percentage org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres #### **Terms** Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis. LOR Limit of Reporting SPIKE Addition of the analyte to the sample and reported as percentage recovery. RPD Relative Percent Difference between two Duplicate pieces of analysis. LCS Laboratory Control Sample - reported as percent recovery. CRM Certified Reference Material - reported as percent recovery. Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water. Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery. **Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show comparison. USEPA United States Environmental Protection Agency APHA American Public Health Association TCLP Toxicity Characteristic Leaching Procedure COC Chain of Custody SRA Sample Receipt Advice QSM US Department of Defense Quality Systems Manual Version 5.3 CP Client Parent - QC was performed on samples pertaining to this report NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within. TEQ Toxic Equivalency Quotient #### QC - Acceptance Criteria RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable: Results <10 times the LOR : No Limit Results between 10-20 times the LOR: RPD must lie between 0-50% Results >20 times the LOR : RPD must lie between 0-30% Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected. WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA #### **QC Data General Comments** - 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided. - 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples. - 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS. - 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike. - 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report. - 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt. - 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte. - 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS. - 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample. 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data. #### **Quality Control Results** | Test | | | Units | Result 1 | | | Acceptance
Limits | Pass
Limits | Qualifying
Code | |--------------------|---------------|--------------|-------|----------|----------|-----|----------------------|----------------|--------------------| | Method Blank | | | | | | | | | | | Heavy Metals | | | | | | | | | | | Lead | | | mg/kg | < 5 | | | 5 | Pass | | | Titanium | | | mg/kg | < 10 | | | 10 | Pass | | | LCS - % Recovery | | | | | | | | | | | Heavy Metals | | | | | | | | | | | Lead | | | % | 100 | | | 80-120 | Pass | | | Titanium | | | % | 97 | | | 80-120 | Pass | | | Test | Lab Sample ID | QA
Source | Units | Result 1 | | | Acceptance
Limits | Pass
Limits | Qualifying
Code | | Spike - % Recovery | | | | | | | | | | | Heavy Metals | | | | Result 1 | | | | | | | Lead | S21-JI28844 | NCP | % | 106 | | | 75-125 | Pass | | | Titanium | N21-JI33907 | NCP | % | 91 | | | 75-125 | Pass | | | Test | Lab Sample ID | QA
Source | Units | Result 1 | | | Acceptance
Limits | Pass
Limits | Qualifying
Code | | Duplicate | | | | | | | | | | | Heavy Metals | | | | Result 1 | Result 2 | RPD | | | | | Lead | S21-JI29409 | NCP | mg/kg | 17 | 18 | 5.0 | 30% | Pass | | | Titanium | S21-JI29409 | NCP | mg/kg | < 10 | < 10 | <1 | 30% | Pass | | #### Comments #### Sample Integrity Custody Seals Intact (if used) Attempt to Chill was evident N/A Sample correctly preserved Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No #### Authorised by: Andrew Black Analytical Services Manager Emily Rosenberg Senior Analyst-Metal (VIC) John Nguyen Senior Analyst-Metal (NSW) Glenn Jackson General Manager Final Report – this report replaces any previously issued Report - Indicates Not Requested - * Indicates NATA accreditation does not cover the performance of this service Measurement uncertainty of test data is available on request or please click here. Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received. Report Number: 811512-S Ramboll Environ Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060 NATA Accredited Accreditation Number 1261 Site Number 25079 Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers
reports and certificates. Attention: Stephen Maxwell Report 804978-A Project name CAPTAINS FLAT LEAD MANAGEMENT PLAN Project ID 318001193 Received Date Jun 23, 2021 | Client Sample ID Sample Matrix Eurofins Sample No. | | | MS_SWAB1
Wipes
N21-Jn44554 | MS_SWAB2
Wipes
N21-Jn44555 | MS_SWAB3
Wipes
N21-Jn44556 | MS_SWAB4
Wipes
N21-Jn44557 | |--|-----|----------|----------------------------------|----------------------------------|----------------------------------|----------------------------------| | Date Sampled Test/Reference | LOR | Unit | Jun 17, 2021 | Jun 17, 2021 | Jun 17, 2021 | Jun 17, 2021 | | Heavy Metals | Į. | 1 | | | | | | Lead | 1 | Total ug | 640 | 97 | 210 | 22 | | Client Sample ID | | | CH_SWAB1 | CH_SWAB2 | CH_SWAB3 | CH_SWAB4 | |---------------------|-----|----------|--------------|--------------|--------------|--------------| | Sample Matrix | | | Wipes | Wipes | Wipes | Wipes | | Eurofins Sample No. | | | N21-Jn44558 | N21-Jn44559 | N21-Jn44560 | N21-Jn44561 | | Date Sampled | | | Jun 17, 2021 | Jun 17, 2021 | Jun 17, 2021 | Jun 17, 2021 | | Test/Reference | LOR | Unit | | | | | | Heavy Metals | | | | | | | | Lead | 1 | Total ug | 8.7 | 2.4 | 46 | 210 | | Client Sample ID
Sample Matrix | | | RFS_SWAB1
Wipes | RFS_SWAB2
Wipes | RFS_SWAB3
Wipes | RFS_SWAB4
Wipes | |-----------------------------------|-----|----------|--------------------|--------------------|--------------------|--------------------| | Eurofins Sample No. | | | N21-Jn44562 | N21-Jn44563 | N21-Jn44564 | N21-Jn44565 | | Date Sampled | | | Jun 17, 2021 | Jun 17, 2021 | Jun 17, 2021 | Jun 17, 2021 | | Test/Reference | LOR | Unit | | | | | | Heavy Metals | | | | | | | | Lead | 1 | Total ug | 43 | 27 | 18 | 8.7 | | Client Sample ID
Sample Matrix | | | STP_SWAB1
Wipes | STP_SWAB2 Wipes | STP_SWAB3
Wipes | STP_SWAB4
Wipes | |-----------------------------------|-----|----------|--------------------|-----------------|--------------------|--------------------| | Eurofins Sample No. | | | N21-Jn44566 | N21-Jn44567 | N21-Jn44568 | N21-Jn44569 | | Date Sampled | | | Jun 17, 2021 | Jun 17, 2021 | Jun 17, 2021 | Jun 17, 2021 | | Test/Reference | LOR | Unit | | | | | | Heavy Metals | | | | | | | | Lead | 1 | Total ug | 10 | 18 | 6.8 | < 1 | | Client Sample ID | | | SWAB_QA01 | SWAB_QA02 | SWAB_RB | SWAB_BLANK | |---------------------|-----|----------|--------------|--------------|--------------|--------------| | Sample Matrix | | | Wipes | Wipes | Wipes | Wipes | | Eurofins Sample No. | | | N21-Jn44570 | N21-Jn44571 | N21-Jn44572 | N21-Jn44573 | | Date Sampled | | | Jun 17, 2021 | Jun 17, 2021 | Jun 17, 2021 | Jun 17, 2021 | | Test/Reference | LOR | Unit | | | | | | Heavy Metals | | | | | | | | Lead | 1 | Total ug | 5.8 | 15 | < 1 | < 1 | #### Sample History Where samples are submitted/analysed over several days, the last date of extraction is reported. If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time. DescriptionTesting SiteExtractedHolding TimeHeavy MetalsSydneyJun 30, 2021180 Days - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS Report Number: 804978-A Australia 6 Monterey Road Dandenong South VIC 3175 1 Phone: +61 3 8564 5000 L NATA # 1261 Melbourne **Environment Testing** Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 1/21 Smallwood Place Murarrie QLD 4172 5 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 46-48 Banksia Road Weisnpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 318001193 Order No.: 804978 Report #: Phone: Site # 1254 ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway North Sydney NSW 2060 Ramboll Australia Pty Ltd Company Name: Address: 5 Day Received: **Priority:** Due: Jun 23, 2021 12:30 PM Stephen Maxwell Jun 30, 2021 Contact Name: Eurofins Analytical Services Manager: Andrew Black Sample Detail Lead (% w/w) HOLD CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: Melbourne Laboratory - NATA Site # 1254 Sydney Laboratory - NATA Site # 18217 × × Brisbane Laboratory - NATA Site # 20794 Perth Laboratory - NATA Site # 23736 Mayfield Laboratory - NATA Site # 25079 External Laboratory Sample ID Sample Date Sampling Time å LAB ID Matrix Paint Jun 17, 2021 × × × × × × N21-Jn44556 N21-Jn44557 N21-Jn44555 N21-Jn44554 N21-Jn44558 N21-Jn44559 N21-Jn44560 Paint Paint Jun 17, 2021 Jun 17, 2021 MS SWAB2 MS SWAB1 Paint Paint Paint Paint Jun 17, 2021 MS SWAB3 MS SWAB4 CH SWAB1 CH SWAB3 CH SWAB2 × × N21-Jn44562 N21-Jn44561 Paint Paint Jun 17, 2021 RFS SWAB1 CH SWAB4 × Australia 6 Monterey Road Dandenong South VIC 3175 1 Phone: +61 3 8564 5000 L NATA # 1261 Melbourne Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 1/21 Smallwood Place Murarrie QLD 4172 5 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 46-48 Banksia Road Welshool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Site # 1254 ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **New Zealand** **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 Received: Due: Jun 23, 2021 12:30 PM Stephen Maxwell Jun 30, 2021 5 Day Contact Name: **Priority:** 318001193 804978 Order No.: Report #: Phone: Lead (% w/w) Sample Detail HOLD CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: × × Melbourne Laboratory - NATA Site # 1254 Brisbane Laboratory - NATA Site # 20794 Perth Laboratory - NATA Site # 23736 Sydney Laboratory - NATA Site # 18217 Mayfield Laboratory - NATA Site # 25079 External Laboratory 10 RFS SWAB2 × × × × × × × × × × × N21-Jn44563 N21-Jn44564 N21-Jn44565 Paint Paint Jun 17, 2021 Jun 17, 2021 > RFS SWAB3 RFS SWAB4 STP SWAB1 STP SWAB2 N21-Jn44566 Paint Paint Paint Paint Paint Paint Paint Jun 17, 2021 Jun 17, 2021 7 Jun 17, 2021 4 7 Jun 17, 2021 STP SWAB3 STP SWAB4 SWAB QA01 15 16 N21-Jn44567 N21-Jn44568 N21-Jn44569 N21-Jn44570 N21-Jn44571 N21-Jn44573 Paint Paint Jun 17, 2021 Jun 17, 2021 SWAB BLAN Jun 17, 2021 SWAB QA02 8 17 SWAB RB Jun 17, 2021 Jun 17, 2021 N21-Jn44572 Eurofins Analytical Services Manager: Andrew Black Page 5 of 10 Australia **Environment Testing** 6 Monterey Road Dandenong South VIC 3175 1 Phone: +61 3 8564 5000 L NATA # 1261 Melbourne Site # 1254 ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +612 9900 8400 NATA # 1261 Site # 18217 1/21 Smallwood Place Murarrie QLD 4172 5 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 46-48 Banksia Road Weisnpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 318001193 804978 Order No.: Report #: Phone: CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: Lead (% w/w) PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079 Received: Jun 23, 2021 12:30 PM Jun 30, 2021 **Priority:** Due: 5 Day Contact Name: Stephen Maxwell Eurofins Analytical Services Manager: Andrew Black HOLD × × N21-Jn44575 N21-Jn44576 N21-Jn44578 N21-Jn44579 N21-Jn44580 N21-Jn44582 N21-Jn44573 N21-Jn44574 N21-Jn44577 N21-Jn44581 Paint Sample Detail Melbourne Laboratory - NATA Site # 1254 Brisbane Laboratory - NATA Site # 20794 Mayfield Laboratory - NATA Site # 25079 Sydney Laboratory - NATA Site # 18217 Perth Laboratory - NATA Site # 23736 Jun 17, 2021 **External Laboratory** SWAB_BLAN RFS_VAC3 RFS VAC2 RFS VAC1 MS VAC1 MS VAC2 MS VAC3 CH VAC2 CH VAC3 CH VAC1 × 25 26 27 28 7 22 23 24 ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway Ramboll Australia Pty Ltd Company Name: Address: North Sydney NSW 2060 Australia 6 Monterey Road U Dandenong South VIC 3175 16 Phone : +61 3 8564 5000 L: NATA # 1261 P Site # 1254 N Melbourne Sydney Unit F3, Building F 16 Mars Road Brisbane 1/21 Smallwood Place Murarine QLD 4172 S Phone : +617 3902 4600 NATA # 1261 Site # 20794 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Box 60 Wrickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Received: Due: Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Jun 23, 2021 12:30 PM Jun 30, 2021 Contact Name: Priority: 5 Day 318001193 804978 Order No.: Report #: Phone: Stephen Maxwell Eurofins Analytical Services Manager: Andrew Black Lead (% w/w) Sample Detail HOLD CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: Page 7 of
10 20 12 × N21-Jn44583 N21-Jn44584 N21-Jn44585 Paint Paint Paint Jun 17, 2021 Jun 17, 2021 Jun 17, 2021 × × Melbourne Laboratory - NATA Site # 1254 Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217 Mayfield Laboratory - NATA Site # 25079 **External Laboratory** 30 STP VAC1 32 STP VAC3 STP VAC2 31 **Test Counts** Perth Laboratory - NATA Site # 23736 #### **Internal Quality Control Review and Glossary** #### General - Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request. - 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated. - 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated. - 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences. - 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds - 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise. - 7. Samples were analysed on an 'as received' basis. - 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results. - 9. This report replaces any interim results previously issued. #### **Holding Times** Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001). For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control. For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD #### Unite mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre ppm: Parts per million ppb: Parts per billion %: Percentag org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres #### **Terms** Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis. LOR Limit of Reporting SPIKE Addition of the analyte to the sample and reported as percentage recovery. RPD Relative Percent Difference between two Duplicate pieces of analysis. LCS Laboratory Control Sample - reported as percent recovery. CRM Certified Reference Material - reported as percent recovery. Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water. Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery. **Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show comparison. USEPA United States Environmental Protection Agency APHA American Public Health Association TCLP Toxicity Characteristic Leaching Procedure COC Chain of Custody SRA Sample Receipt Advice QSM US Department of Defense Quality Systems Manual Version 5.3 CP Client Parent - QC was performed on samples pertaining to this report NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within. TEQ Toxic Equivalency Quotient #### QC - Acceptance Criteria RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable: Results <10 times the LOR : No Limit Results between 10-20 times the LOR: RPD must lie between 0-50% Results >20 times the LOR : RPD must lie between 0-30% Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected. WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA #### **QC Data General Comments** - 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided. - 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples. - 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS. - 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike. - 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report. - 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt. - 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte. - 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS. - 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample. 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data. Eurofins Environment Testing Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 Page 8 of 10 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Report Number: 804978-A #### **Quality Control Results** | Test | Units | Result 1 | | Acceptance
Limits | Pass
Limits | Qualifying
Code | |------------------|----------|----------|--|----------------------|----------------|--------------------| | Method Blank | | | | | | | | Heavy Metals | | | | | | | | Lead | Total ug | < 1 | | 1 | Pass | | | LCS - % Recovery | | | | | | | | Heavy Metals | | | | | | | | Lead | % | 99 | | 80-120 | Pass | | Report Number: 804978-A #### Comments #### Sample Integrity Custody Seals Intact (if used) N/A Attempt to Chill was evident N/A Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No #### Authorised by: Andrew Black Analytical Services Manager John Nguyen Senior Analyst-Metal (NSW) Glenn Jackson General Manager Final Report - this report replaces any previously issued Report - Indicates Not Requested - * Indicates NATA accreditation does not cover the performance of this service Measurement uncertainty of test data is available on request or please click here. Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received. Ramboll Environ Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060 NATA Accredited Accreditation Number 1261 Site Number 18217 Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates. Attention: Stephen Maxwell Report 815203-S Project name CAPTAINS FLAT LEAD MANAGEMENT PLAN Project ID 318001193 Received Date Aug 06, 2021 | Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled | | | PAINT_01
Paint
N21-Au10998
Aug 04, 2021 | PAINT_02
Paint
N21-Au10999
Aug 04, 2021 | PAINT_03
Paint
N21-Au11000
Aug 04, 2021 | |---|------|------|--|--|--| | Test/Reference | LOR | Unit | | | | | Lead (% w/w) | 0.01 | % | < 0.01 | 0.14 | < 0.01 | #### Sample History Where samples are submitted/analysed over several days, the last date of extraction is reported. If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time. DescriptionTesting SiteExtractedHolding TimeLead (% w/w)SydneyAug 10, 20216 Months - Method: LTM-MET-3040 Metals in Waters Soils & Sediments by
ICP-MS Australia **Environment Testing** ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Level 3/100 Pacific Highway North Sydney NSW 2060 Ramboll Australia Pty Ltd Company Name: Address: 6 Monterey Road Dandenong South VIC 3175 1 Phone: +61 3 8564 5000 L NATA # 1261 Site # 1254 F Melbourne Sydney Unit F3, Building F 16 Mars Road Brisbane 1/21 Smallwood Place Murarine QLD 4172 Shone: +617 3902 4600 NATA# 1261 Site # 20794 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 318001193 815203 Order No.: Report #: Phone: CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Project Name: Project ID: Lead (% w/w) Sample Detail × Melbourne Laboratory - NATA Site # 1254 Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217 Mayfield Laboratory - NATA Site # 25079 External Laboratory Sample ID 9 Perth Laboratory - NATA Site # 23736 × × က Paint Paint > Aug 04, 2021 Aug 04, 2021 PAINT 02 PAINT 03 **Test Counts** PAINT 01 Aug 04, 2021 Paint N21-Au10998 N21-Au10999 N21-Au11000 LAB ID Matrix Sampling Time Sample Date Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Box 60 Wrickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **New Zealand** Aug 6, 2021 8:30 AM **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 Stephen Maxwell Aug 13, 2021 5 Day Contact Name: Received: Priority: Due: Eurofins Analytical Services Manager: Andrew Black Page 3 of 5 #### **Internal Quality Control Review and Glossary** #### General - 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request. - 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated. - 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated. - 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences. - 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds - 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise. - 7. Samples were analysed on an 'as received' basis. - 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results. - 9. This report replaces any interim results previously issued. #### **Holding Times** Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001). For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control. For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD #### Units mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres #### **Terms** Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis. LOR Limit of Reporting SPIKE Addition of the analyte to the sample and reported as percentage recovery. RPD Relative Percent Difference between two Duplicate pieces of analysis. LCS Laboratory Control Sample - reported as percent recovery. CRM Certified Reference Material - reported as percent recovery. Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water. Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery. **Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show comparison. USEPA United States Environmental Protection Agency APHA American Public Health Association TCLP Toxicity Characteristic Leaching Procedure COC Chain of Custody SRA Sample Receipt Advice QSM US Department of Defense Quality Systems Manual Version 5.3 CP Client Parent - QC was performed on samples pertaining to this report NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within. TEQ Toxic Equivalency Quotient #### QC - Acceptance Criteria RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable: Results <10 times the LOR : No Limit Results between 10-20 times the LOR: RPD must lie between 0-50% Results >20 times the LOR : RPD must lie between 0-30% Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected. WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA #### **QC Data General Comments** - 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided. - 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples. - 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS. - 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike. - 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report. - 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt. - 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte. - 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS. - 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample. 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data. Eurofins Environment Testing Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 Page 4 of 5 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Report Number: 815203-S #### Comments #### Sample Integrity Custody Seals Intact (if used) N/A Attempt to Chill was evident N/A Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No #### Authorised by: Emma Beesley Analytical Services Manager John Nguyen Senior Analyst-Metal (NSW) Glenn Jackson General Manager Final Report - this report replaces any previously issued Report - Indicates Not Requested - * Indicates NATA accreditation does not cover the performance of this service Measurement uncertainty of test data is available on request or please click here. Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received. Report Number: 815203-S APPENDIX 7 TECHNICAL NOTE ON THE DEVELOPMENT OF SITE-SPECIFIC TRIGGER LEVELS FOR LEAD IN SOIL ### CAPTAINS FLAT LEAD MANAGEMENT PLAN – DERIVATION OF SITE SPECIFIC GUIDELINE VALUES FOR LEAD IN SOIL DERIVATION OF SITE-SPECIFIC GUIDELINE VALUES FOR LEAD IN SOIL Project no. **318001193** Recipient Department of Regional NSW Document type **Technical Note** Version 0 Date 25/11/2021 Prepared by Anand Chandra Checked by Steve Maxwell Approved by Rowena Salmon Description The report provides details of lead site specific guideline values derived from site bioaccessibility data #### **CONTENTS** | 1. | Introduction | 2 | |-----------------------------|--|-----------------------| | 2. | Objectives |
2 | | 3.
3.1 | Data Review and Evaluation Bioavailability Measurements | 3 3 | | 4. | Adopted Target Blood Lead Level (BLL) | 8 | | 5. | Approach to Modelling | 8 | | 6. | Existing HILs | 9 | | 7. 7.1 7.2 7.3 | Exposure Assessment Intake via Ingestion Intake via inhalation Exposure Parameters | 10
10
10
11 | | 8.
8.1.1
8.1.2 | Toxicity Assessment Threshold (non-carcinogenic) Health Effects Carcinogenic (genotoxic) Health Effects | 11
12
13 | | 9. | Lead SSGVs | 13 | | 10. | Blood Lead Level Check | 14 | | 11. | Uncertainty and Sensitivity | 16 | | 12. | Conclusions | 17 | | 13. | References | 18 | | 14. | Limitations | 20 | #### **APPENDICES** Appendix 1 UniSA Bioaccessibility Report Appendix 2 SSGV - HIL A Appendix 3 SSGV -HIL C Appendix 4 SSGV HIL - D #### 1. Introduction Ramboll Australia Pty Ltd (Ramboll) was retained by the Department of Regional NSW (Regional NSW) to prepare the Captains Flat Lead Management Plan to address exposure risks from lead within the environment and the community that relates to the legacy Lake George Mine. This report provides information regarding the development of site-specific guideline values (SSGVs) for lead. The SSGVs are part of the conceptual site model being developed to assist in finalising the Captains Flat Lead Management Plan. The Captains Flat Lead Management Plan Precinct (the Precinct) was defined in the Ramboll Review of Information and SAQP and encompasses built areas of the Captains Flat community, the legacy Lake George Mine site and the Molonglo River from upstream of the water supply dam to a waterhole approximately 1.5 km downstream of the mine. The Precinct includes roads accessing Captains Flat (to a distance of at least 400 m), the rail corridor (to a distance of 1 km) and bushland areas at the perimeters of the community. The extended period of mining within the area has included a range of potentially contaminating activities. As a result, elevated lead concentrations have been identified in shallow soils within the Precinct associated with dust deposition, runoff and emplacement of ore, mine waste and slag. Elevated soil lead concentrations are also expected to influence indoor dust lead concentrations. Distribution around the former preschool and at the south end of Foxlow Street appears related to application of mine waste as fill, surficial deposition (potential runoff from the eastern embankment of the mine and/or windborne dust deposition). Distribution at Foxlow Parklet appears related to application of fill. Lead within accessible soils in the Precinct has originated from different transport pathways and has undergone varying degrees of environmental degradation. It is therefore likely that the bioavailability of lead varies across the Precinct. Lead health investigation levels (HILs) available from NEPM (2013) can be updated using site-specific measure of bioavailability to reflect local exposure conditions. This report details the approach taken to update the following HILs with site-specific bioavailability measurements: - 1. HIL A Residential with garden/accessible soil (home grown produce <10% fruit and vegetable intake (no poultry), also includes childcare centres, preschools and primary schools. - 2. HIL C Public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and footpaths. - 3. HIL D Commercial/industrial, includes premises such as shops, offices, factories and industrial sites. The above HILs were updated based on the exposure scenarios expected at the site. #### 2. Objectives The objective of this report was to use site-specific bioavailability data from accessible soils to derive SSGVs for lead considering different exposure scenarios. Tier 1 screening assessment of soil lead results indicate that relevant NEPM HILs are exceeded at some locations within the Precinct. While relevant HILs are exceeded, the actual risk of adverse effects remains unclear. NEPM HILs for lead use conservative bioavailability assumptions for lead in soil and dust. For soil lead at the site, this refers to the fraction of orally ingested lead that dissolves into the gastrointestinal tract and the fraction of this dissolved lead that is actually absorbed into systemic circulation. For ore and slag derived lead, it is unlikely that lead would be 100% bioavailable, although ¹ Bioavailability is a generic term defined as the fraction of a contaminant that is absorbed into the body following dermal contact, ingestion or inhalation. It is expressed as the ratio (or percentage) of the absorbed dose (systemic dose) to the administered dose (NEPM 2013). factors such as extended weathering, particle size, mixing with soil organic matter may change bioavailability at the point of exposure. To better understand potential risks and the extent to which exposure can change blood lead concentrations in human receptors (especially sensitive subpopulations such as children who are more susceptible to adverse effects of lead), site-specific bioavailability measurement of soil lead was conducted to allow the development of SSGVs. The scope of works included: - Sampling of shallow soils from various locations within the Precinct, based on areas of potential exposure. - Measurement of soil lead bioavailability (bioaccessibility defined later in this report) at the University of South Australia - Derivation of SSGVs using the Integrated Exposure Uptake Biokinetic (IEUBK) model and Adult Lead Methodology (ALM) available from United States Environment Protection Agency (US EPA), as used previously for derivation of lead HILs. - Preparation of this technical note to document the derivation. Generally, only bioavailability information was updated in the IEUBK and ALM models, while the remaining input parameters were kept same as NEPM (2013). Guidance from the following documents was adopted: - NEPC (2013a) Assessment of Site Contamination: Schedule B4 Site-specific Health Risk Assessment Methodology. National Environment Protection Council, Adelaide - NEPC (2013b) Guidance note Lead: Supplementary information to Schedule B7 section 5.4. NEPM Toolbox. http://www.nepc.gov.au/nepms/assessment-site-contamination/toolbox - NEPC (2013c) Guideline on derivation of health-based investigation levels. National Environment Protection Council, Adelaide (Appendix A1 and Appendix D) - EnRisks (2011) IEUBK modelling for establishing HIL A and conducting site-specific adjustments to the model https://www.enrisks.com.au/wp-content/uploads/2013/04/IEUBK-Modelling-for-Establishing-HIL-A-and-Site-Specific-Adjustments.pdf #### 3. Data Review and Evaluation Shallow soil samples were collected from a number of non-residential locations within the Precinct, targeting locations where recreational exposures were likely to occur. Residential sampling within the Precinct were conducted previously by the EPA and soil samples from residential areas were not available for bioavailability testing. For confidentiality reasons, sample results from residential areas were not part of the scope of this report. A total of 16 samples were collected for bioavailability testing including one duplicate. All samples were tested for lead and bioavailability of lead and particle size distribution. Mining related samples such as ores and slag can contain very high concentrations of lead present in a heterogenous matrix containing different mineral phases. Therefore, standard soil analysis method for lead extraction and determination of total lead concentration in such samples is not appropriate. Sample lead concentrations were analysed by ALS Geochemistry using a four-acid digestion approach. Soil lead concentration summary is provided in Table 3-1. #### 3.1 Bioavailability Measurements The toxic effect of a contaminant depends upon the uptake or absorbed dose of contaminant, that is, the amount that gets into the bloodstream after being ingested, inhaled or via skin contact. The fraction of a compound that is absorbed into the body (systemic dose) following exposure via all pathways is generically termed the 'bioavailable fraction'. #### More specifically: - absolute bioavailability is the fraction of a compound which is ingested, inhaled or applied to the skin that actually is absorbed and reaches systemic circulation and - relative bioavailability (RBA) is referred to the comparative bioavailability of different forms of a chemical or for different exposure media containing the chemical. It is the ratio of the absorbed fraction from the exposure medium in the risk assessment (e.g. soil) to the absorbed fraction from the dosing medium used in the critical toxicity study. The assessment of contaminant bioaccessibility may also be considered for estimating contaminant uptake. Bioaccessibility is related to the solubility of the contaminant in the gastrointestinal tract. More specifically, in the context of soil contamination, it is defined as the fraction of a contaminant in soil that is soluble in the relevant physiological milieu (usually the gastrointestinal tract) which is potentially available for absorption. If the lead is sourced from the breakdown of car batteries for example then the lead is likely to be readily bioaccessible; however, if the lead is sourced from an ore body then the bioaccessibility can be quite different and a site-specific value may be used in the site-specific risk assessment. This can be assessed by validating with *in vitro* test systems. Relative bioavailability of contaminants in soil is complicated, variable and difficult to predict. This is because it depends strongly on the nature of the soil matrix (for example, soil type, age of soil, organic carbon,
potential particle size, etc.) and on environmental conditions, particularly redox potential. NEPM HILs for lead are derived using 50% absolute bioavailability value, derived from 100% relative bioavailability assumptions; however, a site-specific assessment can be conducted to further verify or refine this assumption. *In vitro* assays are appropriate as a surrogate method for estimating relative bioavailability for contaminants such as lead and arsenic (NEPC 2013a). There are a number of *in vitro* methods that may be considered as a surrogate measure of arsenic and lead relative bioavailability and these may include Relative Bioavailability Leaching Procedure (RBALP) (US EPA 2007), the Solubility Bioavailability Research Consortium (SBRC) (Kelley et al. 2002) or the in vitro gastrointestinal method (IVG). The bioaccessibility of lead in the soils from the site was determined in <250 μ m particle size fraction using gastric and intestinal phase of the SBRC assay. The gastric phase of this method (termed RBALP for lead) has been correlated to in vivo lead relative bioavailability when determined using juvenile swine (Juhasz et al., 2007; USEPA 2007). Sixteen samples were tested at the Future Industries Institute, based at the Mawson Lakes Campus of the University of South Australia (UniSA). The tests were conducted for several replicates and included quality control testing. The reports are provided in **Appendix 1** (which also describes the method used). Bioaccessibility values for the samples were calculated for gastric (SBRC-G) and intestinal (SBRC-I) phases. Gastric phase extraction occurs in an acidic environment at pH 1.5, while the intestinal phase extraction uses a pH of about 6.5-7.0. The extraction in different phases is designed to replicate the human gut and estimate the soluble fraction of lead in stomach and intestine. Due to the lower pH in gastric phase, the gastric phase bioaccessibility is expected to be higher than intestinal phase bioaccessibility. Usually the difference is not expected to be large between the two extraction phases (Smith et al. 2011; Juhasz, A. personal communication, 20 May 2020) however was large in Captains Flat samples. The gastrointestinal absorption of inorganic lead (the form relevant for the site) occurs primarily from the duodenum (first part of small intestine) and may involve saturable mechanisms of absorption (ATSDR 2019). The stomach plays a role in uptake via transformation(s) of lead-bearing media or form-specific lead to potentially more soluble or otherwise mobile forms (Mushak 1991). The epithelial lining of the small intestine in humans and experimental animals is the principal anatomical and physiological location where lead uptake occurs (Mushak 1991). Therefore, the intestinal phase values are likely to be a realistic indicator of the fraction of lead that will reach systemic circulation. In vivo bioassays such as the juvenile swine, provide the most reliable indication of RBA of lead in soil and are, therefore, the preferred method of analysis (US EPA 2007). However, to reduce cost and time, in vitro methods, such as the one employed by UniSA, are commonly used for estimating lead RBA. For the in vitro methods to be acceptable, results for various soil types and chemical forms of lead need to be validated. It has been shown previously that relative SBRC-I values obtained using in vitro methods provide the best estimate of overall in vivo relative lead bioavailability, especially for soils that have more soluble forms of lead (Smith et al. 2011; Juhasz et al. 2009). SBRC-G values provide a good prediction of in vivo relative lead bioavailability for soils where lead mineralogy limits lead dissolution but tend to overpredict relative lead bioavailability for soils with more soluble forms of lead (Juhasz et al. 2009). Lead mineralogy in Precinct soils appears variable and so SBRC-G has been conservatively adopted. This aligns with US EPA 2021 guidance that recommends gastric phase extractions for in vitro bioaccessibility assessments for lead in soil. The SBRC-G, SBRC-I and relative SBRC-I values for different samples are shown in Table 3-1. For this assessment maximum SBRC-G values was adopted as a conservative measure of lead bioaccessibility for site soils. Table 3-1: Bioaccessibility results of soil samples from the Precinct. | Soil | Total Pb | In vitro | Pb Bioacc Pb Bio | | Location | |---------|------------------------|-------------|------------------------|------|----------------| | 3011 | (mg kg ⁻¹) | Phase | (mg kg ⁻¹) | (%) | Location | | | 3250 | SBRC-G | 224 | 6.9 | | | R_S117a | | SBRC-I | 9.5 | 0.3 | Flood berms | | | | Rel-SBRC-I* | | 2.8 | | | | 2720 | SBRC-G | 2010 | 73.9 | | | R_S118a | | SBRC-I | 224 | 8.2 | Tennis Court | | | | Rel-SBRC-I* | | 79.6 | | | | 2580 | SBRC-G | 42 | 1.6 | | | R_S119a | | SBRC-I | 2.5 | 0.1 | Flood berms | | | | Rel-SBRC-I* | | 0.9 | | | | 9090 | SBRC-G | 5660 | 62.3 | | | R_S120a | | SBRC-I | 2080 | 22.9 | Foxlow Parklet | | | | Rel-SBRC-I* | | 60.8 | | | | 49250 | SBRC-G | 30250 | 61.4 | | | R_S121a | | SBRC-I | 13150 | 26.7 | Foxlow Parklet | | | | Rel-SBRC-I* | | 70.9 | | | | 5055 | SBRC-G | 3695 | 73.1 | | | R_S122a | | SBRC-I | 1210 | 23.9 | Foxlow Parklet | | | | Rel-SBRC-I* | | 63.6 | | | Soil | Total Pb | In vitro Pb Bioacc | | Pb Bioacc | Location | | |------------------|------------------------|--------------------|------------------------|-------------------|----------------------|--| | | (mg kg ⁻¹) | Phase | (mg kg ⁻¹) | (%) | | | | | 3865 | SBRC-G | 740 | 19.1 | | | | R_S123a | | SBRC-I | 90 | 2.3 | Eastern embankment | | | - | | Rel-SBRC-I* | | 22.5 | | | | | 30650 | SBRC-G | 7015 | 22.9 | | | | R_S124a | | SBRC-I | 1485 | 4.8 | Eastern embankment | | | - | | Rel-SBRC-I* | | 12.9 | | | | | 7510 | SBRC-G | 4900 | 65.2 | | | | R_S125a | | SBRC-I | 614 | 8.2 | Eastern embankment | | | <u> </u> | | Rel-SBRC-I* | | 21.7 | | | | | 91800 | SBRC-G | 52400 | 57.1 | | | | R_S126a | | SBRC-I | 25900 | 28.2 | Rail Corridor | | | - | | Rel-SBRC-I* | | 75 | | | | | 3125 | SBRC-G | 1080 | 34.6 | | | | R_S145a | | SBRC-I | 168 | 5.4 | Eastern embankment | | | - | | Rel-SBRC-I | | 52 | | | | | 1965 | SBRC-G | 223 | 11.3 | | | | R_S146a | | SBRC-I | 33 | 1.7 | Eastern embankment | | | - | | Rel-SBRC-I | | 16.2 | | | | | 30850 | SBRC-G | 776 | 2.5 | | | | R_S147a | | SBRC-I | 92 | 0.3 | Rail Corridor | | | - | | Rel-SBRC-I | | 2.9 | | | | | 49050 | SBRC-G | 39300 | 80.1 | | | | R_S148a | | SBRC-I | 19600 | 40 | Rail Corridor | | | - | | Rel-SBRC-I | | ~100 | | | | | 4400 | SBRC-G | 565 | 12.8 | | | | R_S149a | | SBRC-I | 56 | 1.3 | Eastern embankment | | | - | | Rel-SBRC-I | | 12.3 | | | | | 1485 | SBRC-G | 824 | 55.5 | | | | QA201 | | SBRC-I | 126 | 8.5 | Replicate of R_S123a | | | | | Rel-SBRC-I | | 82 | | | | | 6400 | SBRC-G | 4760 | 74.4 ^w | | | | QC1 ^w | | SBRC-I | 938 | 14.7 | Laboratory reference | | | - | | Rel-SBRC-I | | ~100 | | | Two QC samples were analysed. Lead bioaccessibility for the QC1 (laboratory reference sample) soil was within a suitable gastric phase extraction range for this reference material. QC201 was the replicate for sample R_{S123a} and has a calculated relative percent difference (RPD) of 97.6%. The RPDs for total lead in the bioaccessible fraction and SBRC-G are the same indicating that variable gastric phase bioaccessibility that has been reported is a function of variability in total lead concentrations (or other soil properties that result in variable total lead concentrations – eg: multiple contaminant sources) rather than variability in analysis. For the derivation of SSGVs, the bioaccessibility results from the rail corridor were not considered. The history of the rail corridor indicates spillage of ore concentrate during rail loading and the contaminant profile (higher total lead and TCLP) are unique compared to other public areas of the Precinct. For these reasons rail corridor SBRC-G values were excluded. Additionally, rail corridor contamination is being managed separately to the rest of the Precinct and is being regulated under a VMP, subject to site audit and that interim measures including fencing and signage to restrict access to the corridor have already been implemented. The SBRC-G values considered for deriving the SSGVs are shown in Table 3-2. Statistics for the dataset are also shown in that table. Table 3-2: Bioaccessibility values (SBRC-G) considered for deriving lead SSGVs for the Precinct. | Soil | Total Pb | Total Pb In vitro Pb Bi | | Pb Bioacc. | Location | | | |----------------|------------------------------|-------------------------|------------------------|------------|--------------------|--|--| | | (mg kg ⁻¹) Phase | | (mg kg ⁻¹) | (%) | | | | | R_S117a | 3250 | SBRC-G | 224 | 6.9 | Flood berms | | | | R_S118a | 2720 | SBRC-G | 2010 | 73.9 | Tennis Court | | | | R_S119a | 2580 | SBRC-G | 42 | 1.6 | Flood berms | | | | R_S120a | 9090 | SBRC-G | 5660 | 62.3 | Foxlow Parklett | | | | R_S121a | 49250 | SBRC-G | 30250 | 61.4 | Foxlow Parklett | | | | R_S122a | 5055 | SBRC-G | 3695 | 73.1 | Foxlow Parklett | | | | R_S123a | 3865 | SBRC-G | 740 | 19.1 | Eastern embankment | | | | R_S124a | 30650 | SBRC-G | 7015 | 22.9 | Eastern embankment | | | | R_S125a | 7510 | SBRC-G | 4900 | 65.2 | Eastern embankment | | | | R_S145a | 3125 | SBRC-G | 1080 | 34.6 | Eastern embankment | | | | R_S146a | 1965 | SBRC-G | 223 | 11.3 | Eastern embankment | | | | R_S149a | 4400 | SBRC-G | 565 | 12.8 | Eastern embankment | | | | Pb Bioaccessib | ility % Statistic | s | | | | | | | n | | | | 12 | | | | | min | | | | 1.6 | | | | | max | | | | 73.9 | | | | | Mean | | | | 37.1 | | | | | Median | Median | | | | 28.8 | | | | SD | | | | 28 | | | | | 95% UCL | | | | 51.6 | | | | | 95 %ile | | | | 73.5 | | | | | 80 %ile | | | | 64.6 | | | | Based on the maximum, 75% bioaccessibility has been adopted for deriving the SSGVs. #### 4. Adopted Target
Blood Lead Level (BLL) Potential health effects of lead vary greatly depending upon a person's age, exposure levels, duration of exposure and presence of any pre-existing conditions. Children and foetuses (via pregnant women) are most at risk. In pregnant women, lead in the bloodstream can cross the placenta into the foetal blood. Children and babies (including foetuses) are more sensitive to health effects from lead than adults (NHMRC 2016). There is an association between blood lead levels of 5 to $10~\mu g/dL$ and adverse cognitive effects (reduced Intelligence Quotient (IQ) and academic achievement) and behavioural problems (effects on attention, impulsivity and hyperactivity) in children. It is now recommended that for blood lead levels greater than $5~\mu g/dL$ the sources of exposure should be investigated and reduced particularly for children and pregnant women (NHMRC 2016). The main receptors at the site include Precinct residents and visitors including children and workers. The most sensitive receptors representing these groups are females of reproductive capacity and infants/children. Current NEPM (2013) HILs for lead adopts a BLL of $10 \mu g/dL$ for these groups of sensitive receptors. Recent NSW EPA advice on the adoption of this BLL is as follows: The EPA support the use of 10ug/dL blood lead levels in bioavailability modelling for the Captains Flat lead management plan and for developing site specific health investigation levels. We note that: - 1. This trigger level was used to derive the current HIL's for lead and until the NEPM is revised, it is still considered the acceptable value. This approach would be consistent with the National Environment Protection measure (Assessment of Site Contamination). For reference, the relevant clause in the NEPM (schedule B7, section 5.4) states: [...]. For the purpose of deriving the HILs, lead has been assumed to act as a threshold contaminant and a blood lead concentration of 10 μg dL⁻¹ has been applied as the maximum tolerable level for adults, children and the developing fetus (NHMRC 2009). It should be noted that it is generally recognised that there may be no threshold for the neurotoxic action of lead (DEFRA 2002). - 2. We have received advice from NSW Health (and indirectly from the NHMRC lead committee) that the value of 10ug/dL should still be used for the time being. They did however note that where background levels of blood leads in an area are likely to exceed 5ug/dL, additional protection measures should be established. Based on the advice from NSW EPA and to be consistent with current NEPM (2013) lead HILs, a BLL of $10 \mu g/dL$ was adopted for all exposure scenarios/receptors in this report. #### 5. Approach to Modelling The effects of lead exposure have often been evaluated based on the blood lead content, which is generally considered to be the most accurate means of characterising exposure. Other measures of exposure such as bone lead, hair lead and urine lead, can be used but are considered less reliable. Physiologically based pharmacokinetic models, such as the US EPA IEUBK model, have been used for assessment of lead exposure risks in children. The model simulates multimedia exposures, uptake and kinetics of lead in children ages 0-7 years for predicting pseudo-steady state relationships between lead exposure and blood lead. US EPA also developed a slope factor model called ALM for assessing lead exposures in adults. Lead biokinetics are represented with a simple linear relationship between blood lead and lead uptake called the biokinetic slope factor. Using this model, a foetus being carried by a pregnant woman is the most sensitive receptor. Both these models are lifetime models and rely upon an equilibrium of lead distribution that is established over an extended period. Normally, they cannot be used to characterise short-term kinetics of blood lead (ATSDR 2019), however exposure adjusted approaches can be used (US EPA 2016 and 2003b). The ALM and IEUBK model require a minimum of 90 days exposure to produce quasi-steady state blood lead concentrations (US EPA 2003a). The derivation of NEPM Health screening levels (HILs) used the IEUBK model for calculating HIL-A, HIL-B and HIL-C where children are main receptors and the ALM for calculating HIL-D where an adult female of reproductive capacity (foetus) is the most sensitive receptor. Accordingly, all of these values are derived assuming long-term, consistent exposure is occurring. However, the level and frequency of exposure can vary at the site, especially under recreational exposure scenario where exposures may not occur frequently for 365 days of the year. Never-the-less approach consistent with NEPM (2013) has been adopted for the derivation of relevant SSGVs for lead. #### 6. Existing HILs The NEPM (2013) guidelines provide default HILs for lead under different land use scenarios. The most relevant default HIL values applicable to different site receptors are: - Precinct residents HIL A (residential 300 mg/kg): residential areas within the Precinct are typical of low density housing with accessible soils. Other applicable locations such as childcare/preschools are also present. - Precinct residents and visitors HIL C (recreational; 600 mg/kg): Precinct residents and visitors may use public open space such as parks, playgrounds and playing fields. - Workers HIL D (1500 mg/kg): workers may be present in commercial/industrial properties within the Precinct. The HILs are applicable for assessing human health risk via all relevant pathways of exposure. HILs are scientifically based, generic assessment criteria designed to be used in the first stage (Tier 1 or 'screening') of an assessment of potential risks to human health from chronic exposure to contaminants. They are intentionally conservative and are based on a reasonable worst-case scenario. The HILs are generally derived by integrating exposure estimates with toxicity reference values, that is, tolerable daily intakes (TDI), acceptable daily intakes (ADI), and reference doses (RfD), to estimate the soil concentration of a substance that will prevent exceedance of the toxicity reference value under the defined land use scenario. The toxicity reference values are generally based on the known most sensitive significant toxicological effect. HILs establish the concentration of a contaminant above which further appropriate health investigation and evaluation will be required. Levels slightly in excess of the HILs do not necessarily imply unacceptable conditions or that a significant health risk is likely to be present. Exceeding a HIL means further investigation is required and does not indicate that 'clean-up' is required. The use of investigation and screening levels as default remediation criteria may result in unnecessary remediation and increased development costs, unnecessary disturbance to the site and local environment, and potential waste of valuable landfill space. As such, default HILs are not intended to be clean-up levels. The decision on whether clean-up is required, and to what extent, should be based on site-specific assessment triggered by an exceedance of the HIL. Health risk assessment is the primary driver for making site decisions including the need for appropriate risk management options. Other considerations such as practicality, timescale, effectiveness, cost, sustainability and associated ecological risk assessment can also be relevant. #### 7. Exposure Assessment The exposure assumptions for Precinct residents, visitors and workers were adopted from NEPM (2013) guidelines. Soil and dust ingestion, and inhalation are likely to be the main routes of exposure. The primary method of assessing exposure to lead contamination was via blood lead modelling, using IEUBK for Precinct residents and visitors (HIL-A and HIL-C) and ALM for workers (HIL-D). The models allow for soil and dust intake via ingestion. The IEUBK model also includes background intake for air, water and dietary lead. #### 7.1 Intake via Ingestion Lead concentrations across the site were variable suggesting that lead intake would vary depending on the location of exposure at the site. For workers, the ingested amount would be reduced if sufficient personal protective equipment is used, and dust minimisation protocols are followed. The health impacts of ingested lead depend on the bioavailability of lead in the ingested material. It is the proportion of an ingested chemical substance that is absorbed from the gut into the body and reaches systematic circulation without change (EA 2009). The bioavailability of lead in the material was analysed and is described in Section 3. The water use guidelines developed separately (refer to Ramboll 2021 Conceptual Site Model Report) shows that children can have additional lead intake from recreational exposures as follows: - Incidental ingestion 0.36 μg/day - Recreational drinking 0.23 μg/day The total estimated intake from recreational water exposure is about $0.6 \mu g/day$. This level of intake is unlikely to cause any material change in the developed SSGV for lead. However, this intake was added to the IEUBK model as alternate intake for all age groups. #### 7.2 Intake via inhalation Lead in dust particles would be associated with particles of different sizes and this influences where in the respiratory tract it is deposited. Lead associated with smaller, respirable dust particles are predominantly deposited in the pulmonary region of the respiratory tract, where it can either get absorbed directly into general circulation or be transported via phagocytic cells to the gastrointestinal tract. Lead associated with larger particles would be deposited in the upper and large airways, such as nasal and pharyngeal and tracheobronchial regions of the respiratory tract and may be transported via mucociliary transport to the oesophagus and swallowed. This would also make its way to the gastrointestinal tract. The
dust lung retention factor describes the percentage of respirable dust that is small enough to be retained in lungs and is associated with health effects. For both indoor and outdoor dust exposures, the respirable fraction is estimated at 37.5% of the inspirable fraction. This fraction is recommended by enHealth (2012) where it was considered that 75% of the inhaled (inspirable) dust will be retained in the respiratory tract (25% is exhaled) of which 50% is small enough to reach the pulmonary alveoli, resulting in a respirable fraction of 37.5%. Therefore, a large proportion of the inhaled particles are expected to either be exhaled out or be transported to the gastrointestinal tract where absorption similar to ingested soil fractions would occur. #### 7.3 Exposure Parameters The US EPA IEUBK and ALM models were used to undertake blood lead modelling and development of the SSGVs. The input parameters were directly adopted from NEPM (2013) guidelines (as described in EnRisks 2011, NEPM Schedule B7 Appendix A1 and D and elsewhere in NEPM guidelines), except for bioaccessibility information. #### 8. Toxicity Assessment Lead (Pb) is a naturally occurring element and can exist in three oxidation states, Pb(0) – metallic lead, Pb(II) – most common and Pb(IV). The most common mineral form of lead is galena (PbS), followed by anglesite (PbSO₄) and cerussite (PbCO₃). Lead is used in a wide range of materials, including storage batteries, metal alloys, radiation shields, ammunition and chemical resistant linings. Lead has also been widely used as a paint pigment and additive in petrol, although its use in these products has been greatly reduced (ATSDR, 2007). Natural mobilization of lead occurs via the weathering of mineral deposits and as a result of volcanic activity (ATSDR, 2007). However, these releases are minor compared to emissions from anthropogenic sources, including the mining and smelting of lead-bearing ores, the manufacture of lead-containing products, the combustion of coal and the incineration of lead-based wastes (ATSDR, 2007). The use of lead in products such as petrol, paints, pesticides, ammunition and fishing sinkers has historically resulted in emissions of lead being released to the environment. However, as lead has been phased out as a constituent of these products over the years, their significance as an environmental source of lead has greatly diminished. Lead is persistent in the environment, the primary sinks being soil and sediment (ATSDR, 2007). Atmospheric lead is mainly present in particulate form, with an average residence time of 10 days (ATSDR, 2007). The transport and bioavailability of lead deposited to soil is dependent upon the pH and mineral composition of the soil, as well as the amount and type of organic matter present (WHO, 1995). Lead strongly adsorbs to organic matter and is not readily leached to groundwater or sub-soils (ATSDR, 2007). Lead deposited to water will partition between the sediment and aqueous phase depending upon the salinity, pH and hardness of the water and the amount of humic material present (WHO, 1995). To quantify exposure in humans, data are expressed in terms of absorbed lead, and not in terms of external exposure levels (e.g., concentration in water) or dose (e.g., mg/kg/day). Blood lead mainly reflects exposure history of the previous few months and does not necessarily reflect the larger burden and much slower elimination kinetics of lead in bone. Lead in bone is considered a biomarker of cumulative or long-term exposure because lead accumulates in bone over the lifetime and most of the lead body burden resides in bone. Most of the body burden of Pb (the total amount of Pb in the body) is distributed to the bone, with approximately 94% and 76% of the body burden found in bone in adults and children, respectively (ATSDR 2019). The remainder is distributed to blood and soft tissues. Once absorbed, lead is rapidly taken up in the blood and distributed to soft tissues including the kidney, liver and bone marrow and then slowly redistributed to the bone (WHO, 2011). Lead has a half-life of approximately 40 days in blood and soft tissue, and 20 to 30 years in bone (NHMRC, 2011). Lead is primarily excreted in faeces and urine, with minor excretion via sweat, saliva, hair, nails and breast milk (ATSDR, 2007). Lead exposure can cause increases in blood lead concentrations with blood lead concentrations between 5 to 39 μ g/dL potentially associated with short-term impacts relating to spontaneous abortion, postnatal developmental delay and reduced birth weight (SafeWork Australia 2013). Short-term effects of blood lead >40 μ g/dL could also include neurocognitive deficits, sperm abnormalities, anaemia, colic, encephalopathy and other nonspecific symptoms such as headache, fatigue, sleep disturbance, anorexia, constipation, arthralgia and myalgia. Signs and symptoms of gastrointestinal and neurological toxicity can also occur at blood lead levels >30 μ g/dL, with severity increasing with blood lead following short-term exposure (ATSDR 2019). While inorganic lead compounds are classified by the International Agency for Research on Cancer (IARC) as Group 2A agents that are probably carcinogenic to humans, the non-carcinogenic effects (threshold) are more sensitive and have a more pronounced effects in exposed children and adults. For risk assessment purposes, clean-up determinations and levels based on the more sensitive, non-cancer endpoint are expected to be protective against other effect requiring higher exposures, including cancer endpoints. #### 8.1.1 Threshold (non-carcinogenic) Health Effects The majority of information regarding the toxicity of lead has been gathered from studies of workers in occupational settings and from studies of adults and children in the general population. Exposure to lead can have effects on multiple organs and bodily functions due to its multi-mode action in biological systems (ATSDR, 2007). The developing nervous system, haematological and cardiovascular systems and the kidneys are considered the most sensitive targets for lead toxicity (ATSDR, 2007). However, health effects observed as a result of lead exposure can differ substantially between individuals depending on age, the amount of lead, the length of exposure and the presence of other health conditions (NHMRC, 2015). Occupational studies of lead workers suggest long-term exposure to lead may be associated with increased mortality due to cerebrovascular disease (ATSDR, 2007). Population studies have reported significant associations between lead levels measured in both bone and blood and increases in blood pressure (ATSDR, 2007). Lead is also known to inhibit heme biosynthesis, shorten erythrocyte lifespan and induce inappropriate production of the erythropoietin hormone, leading to inadequate maturation of red cell progenitors and contributing to anaemia (ATSDR, 2007). Indeed, low levels of haemoglobin have been observed in both adults and children following long-term exposure to lead (NHMRC, 2015). Lead also affects kidney function by reducing glomerular filtration rates (ATSDR, 2007). Kidney inflammation, renal impairment and chronic nephropathy causing death, have been observed following short-term exposures to lead, with the more severe effects associated with increasing blood lead levels (NHMRC, 2015). Encephalopathy (severe abnormal brain function) has been associated with prolonged exposure to high amounts of lead in adults and children (NHMRC, 2015). Symptoms can include irritability, agitation, poor attention span, headache, confusion, uncoordinated movements, drowsiness, constipation, convulsions, vomiting, seizures, coma and death (NHMRC, 2015). Lead poisoning in children has been linked to residual cognitive deficits that can be still detected in adulthood (ATSDR, 2007). Other neurobehavioral effects observed after long-term, high concentration exposure in adults and children include problems with thinking, anxiety, mood change, dizziness, fatigue, sleep disturbance, lethargy, impotence, decreased libido, dizziness, weakness, paresthesia and paralysis (NHMRC, 2015). Associations between blood and/or bone lead and poorer performance in neurobehavioral tests have been reported in studies of older populations, with lead also shown to affect nerve conduction velocity and postural balance in workers (ATSDR, 2007). Lead has been associated with accelerated skeletal maturation in children, which may predispose them to the development of osteoporosis in later life (ATSDR, 2007). Increased occurrence of dental caries in children and periodontal bone loss have also been linked to lead exposure, as has a reduction in circulating levels of vitamin D, which is required for maintenance of calcium homeostasis (ATSDR, 2007). Changes in the circulating levels of thyroid hormones and reproductive hormones have been observed in workers exposed to lead, as well as altered immune parameters with reported effects including changes in T-cell populations, response to T-cell mitogens and reduced chemotaxis of polymorphonuclear leukocytes (ATSDR, 2007). Lead exposure has been linked to increases in serum IgE in children, a primary mediator for type-1 hypersensitivity involved in allergic diseases such as asthma, leading to suggestions that lead could be a risk factor for childhood asthma (ATSDR, 2007). #### 8.1.2 Carcinogenic (genotoxic) Health Effects The IARC has determined that there is sufficient evidence from animal studies and limited evidence from human studies to classify inorganic lead and lead compounds as probably carcinogenic to humans. Ingestion of high concentrations of lead compounds has been linked to the development of renal tumors in experimental animals (ATSDR, 2007). Human-based research, however, has been less conclusive. Studies of lead workers have shown limited evidence of an increased risk of lung and stomach cancer as a result of occupational
exposure to lead, with others showing weak evidence for an association with kidney cancer and gliomas (ATSDR, 2007). Occupational studies suggest lead is a clastogenic agent, capable of inducing chromosomal aberrations, micronuclei and sister chromatid exchanges in peripheral blood cells (ATSDR, 2007). Mammalian studies testing mutagenicity have correlated DNA damage observed in the lung, liver and kidney with lead exposure, although *in vitro* studies have yielded mostly negative results for lead (ATSDR, 2007). #### 9. Lead SSGVs Absolute bioavailability (ABA; absorption fraction) values were calculated from the adopted bioaccessibility data and used in IEUBK and ALM models. The values were calculated as follows and are shown in **Table 9-1** together with NEPM defaults: $$AF_{S,D} = AF_{Soluble} \times RBA_{Soil/Soluble} \dots eq 11.1$$ where, | AF _{s,D} | Absorption fraction (same for soil and dust) | |-----------------------|--| | AF _{soluble} | Absorption factor in children (0.5) and adults (0.2) | | RBA | Relative bioavailability | Table 9-1: Bioavailability input data for modelling. | Approach | ABA (AF _{S,D}) | AF _{Soluble} | RBA | |---------------------------|--------------------------|-----------------------|------| | NEPM Default | 50.0% | 50% | 100% | | Site Specific - HIL A & C | 37.5% | 50% | 75% | | Site Specific - HIL D | 15.0% | 20% | 75% | The IEUBK model was used to derive SSGVs for to update HIL-A and HIL-C guideline values. The algorithms and background information about the IEUBK model are provided elsewhere (NEPC 2013d; US EPA 1994). IEUBK models blood lead levels in children aged 0-84 months (0-7 years) and calculates blood lead concentrations in 7 age groups separately (0-1 yrs, 1-2 yrs, 2-3 yrs, 3-4yrs, 4-5 yrs, 5-6 yrs and 6-7 yrs). The age range 1–2 years is considered to be the most sensitive as a result of lowest body weight combined with high hand-to-mouth activity and crawling. Parameters associated with air, water, diet, soil and dust were adopted from NEPM defaults. The ALM was used was used to derive SSGV to update HIL-D guideline value. The algorithms and background information about this methodology are provided elsewhere (NEPC 2013d; US EPA 2003a). The baseline blood lead concentration input parameter of the model represents the geometric mean blood lead concentration in woman of child-bearing age and the geometric standard deviation (GSD) input parameter is a measure of the inter-individual variability in these concentrations. The default input parameters in the model comes from a survey of US women 17-45 years of age under the National Health and Nutrition Examination Survey (NHANES). The most recent update of the model default parameters was conducted in 2014, with previous updates conducted in 2002, 2007 and 2010 (US EPA 2017a). Consistent with the NEPM derivation of lead HIL-D values, these latest default parameters were used in the model calculations. The calculated SSGVs for different exposure scenarios are shown in Table 9-2 and model print outs are provided in Appendices 2 to 4. Table 9-2: Lead SSGVs developed using site-specific bioaccessibility data. | Landuse | NEPM Ref | · | Default Value | SSGV-
estimated
(75% Bioacc) | Adopted SSGV Based on 75% Bioacc | | |-------------------------|----------|-------|---------------|------------------------------------|------------------------------------|--| | Landuse | NEPM RET | Units | Default Value | 10 μg/dL BLL
Target | | | | Residential | HIL A | mg/kg | 300 | 399 | 400 | | | Public open space | HIL C | mg/kg | 600 | 683 | 700 | | | Commercial / industrial | HIL D | mg/kg | 1500 | 3675 | 4000 | | #### 10. Blood Lead Level Check The SSGVs were used to predict blood lead levels in receptor groups to ensure sensitive sub populations would be protected from the proposed SSGVs. These are shown in Table 10-1 and Table 10-2. Table 10-1: Summary of IEUBK modelling results for SSGVs, HIL-A and HIL-C | IEUBK Output
Description | Children
Age Groups
(Years) | Units | Output
Value (HILA
– 400
mg/kg) | Output
Value (HILC
- 700
mg/kg) | Comments | | |-----------------------------|-----------------------------------|-------|--|--|---|--| | | 0.5 - 1 | μg/dL | 3.5 | 3.6 | | | | | 1 - 2 | μg/dL | 5.5 | 5.5 | | | | | 2 - 3 | μg/dL | 5.5 | 5.6 | Mean blood lead level in children of different age group. The most sensitive | | | Geometric | 3 - 4 | μg/dL | 4.9 | 5.0 | age group of 1-3 years has the highest | | | mean blood | 4 - 5 | μg/dL | 4.6 | 4.7 | predicted blood lead level but is below
the adopted BLL of 10 µg/dL. | | | lead level | 5 - 6 | μg/dL | 4.4 | 4.5 | | | | | 6 - 7 | μg/dL | 4.2 | 4.2 | | | | | 0 - 7 | μg/dL | 4.6 | 4.7 | Mean blood lead level in children of age 0-7 years. | | | Percent above the target | 0 - 7 | % | 5 | 5.4 | NHMRC guidelines require that at least | | | Percent below the target | 0 - 7 | % | 95 | 94.6 | 95% of the Australian population should be below the target blood lead level. | | Table 10-2: Summary of ALM modelling results | ALM Output
Description | Units | Output
Value
(HILD –
4000
mg/kg) | Comments | |--|-------|--|---| | Geometric mean blood
lead of adult worker
(female of reproductive
capacity) | μg/dL | 4.5 | This value applies to females of reproductive capacity. However, if it is assumed that model default input parameters also apply to 'males and females not of reproductive capacity' then this value would be a good estimate of their blood lead concentration. Value is below target of $10~\mu g/dL$. | | 95th percentile blood
lead among foetuses of
adult workers | μg/dL | 10.8 | This is the expected blood lead concentration against a target of 10 $$ µg/dL. The estimated blood lead level is slightly exceeded due to rounding-off of the SSGV. | | Probability that foetal
blood lead exceeds
target blood lead
(assuming lognormal
distribution) | % | 6.4 | This is the expected probability that foetuses of exposed sensitive onsite workers exceed the target value of 10 μ g/dL. NHMRC guidelines require that at least 95% of the Australian population should be below the target blood lead level. Therefore, acceptable probability for exceeding the target is 5%. The estimated probability is slightly exceeded due to rounding-off of the SSGV. | #### 11. Uncertainty and Sensitivity The SSGVs were mainly developed by updating the bioaccessibility estimate from NEPM assumptions. Therefore, only parameters relating to bioavailability measurements are discussed here. NEPM (2013) and references therein should be consulted for uncertainties and sensitivities relating to other modelling parameters. A SSGV has been derived for land uses contemplated under HIL-A though Ramboll has only considered its application to the pre-school and school. The NSW EPA is providing guidance on private land and may consider this SSGV applicable to private residences. The bioaccessibility of lead in soil in public areas was observed to range around 10% at the Eastern Embankment to maximums of around 74% in Foxlow Parklet. EnRisks (2011) states that where *only a minimal number of RBA samples are collected, and these show a large range of RBA values...such assessments defaults to the use of the maximum RBA values*. The Precinct bioaccessibility investigation included a comprehensive sampling of different areas of the Precinct with a total of 16 samples and therefore variability in soil lead bioaccessibility is considered to be well characterised. This means that Precinct users are likely to be exposed to soil with a range of bioavailability and is highly unlikely that someone (including children) are exposed to soils with highest bioaccessibility all of the exposure time. Furthermore, note that bioaccessibility measurements are performed on $<250 \mu m$ soils samples to simulate soil particle sizes associated with hand-mouth action of children in the most sensitive age group (1–2-year-olds). Parts of the public areas where samples were collected from are grassed and therefore soil access is restricted. Hence the level of exposure assumed in a continuous long-term exposure model such as IEUBK is not likely to exist, at least from public areas. Based on the above, a more realistic bioaccessibility estimate, commensurate with the expected level of exposure, would have been represented by 95% upper confidence limit (UCL) of mean or 80th percentile. A sensitivity analysis is presented in Table 11-1 to demonstrate the range of SSGVs that may result from such a consideration. Table 11-1: Sensitivity analysis of SSGVs from different bioaccessibility statistics. | Bioaccessibility
Statistics | Bioaccessibility value (%) | SSGV - HIL A
(mg/kg) | SSGV - HIL C
(mg/kg) | SSGV - HIL D
(mg/kg) | |--------------------------------|----------------------------|-------------------------|-------------------------|-------------------------| | Maximum | 75 | 400 | 700 | 4000 | | 95 th percentile | 73.5 | 406 | 696 | 3750 | | 80 th percentile | 65 | 460 | 800 | 4200 | | 95% UCL | 50 | 600 | 1000 | 5500 | ^{*}values for maximum biocc has been rounded-off #### 12. Conclusions Site-specific lead guideline values (SSGVs) were developed
using lead bioaccessibility data collected from various areas of the Precinct with target blood lead level of 10 μ g/dL. The following SSGVs were developed for different landuse scenarios using conservative estimates of overall soil bioavailability at the site: SSGV - HIL A: 400 mg/kg SSGV - HIL C: 700 mg/kg SSGV - HIL D: 4000 mg/kg The above SSGVs can be applied for screening assessment of soil concentrations within public spaces in the Precinct and to determine areas which require remediation and/or management. Marginal exceedance of these SSGVs may not constitute an immediate risk of adverse effects, however further investigation including exposure assessment may be warranted. #### 13. References - 1. ATSDR (2007) *Toxicological Profile for Lead*. Agency for Toxic Substances and Disease Registry. August, 2007. - 2. ATSDR (2019) Toxicological Profile for Lead Draft for Public Comment https://www.atsdr.cdc.gov/toxprofiles/tp13.pdf - EA (2009) Updated technical background to the CLEA model. Science report SC050021/SR3, Environment Agency, Bristol, UK. - 4. enHealth (2012) Australian Exposure Factor Guide. Department of Health and Ageing and enHealth Council, Commonwealth of Australia - 5. enHealth (2012) Environmental Health Risk Assessment, Guidelines for Assessing Human Health Risks from Environmental Hazards - 6. EPA (2015) Preliminary waste classification suburbs surrounding the former Pasminco smelter. July 2015. - 7. International Agency for Research on Cancer (IARC) (2006) IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Inorganic and Organic Lead Compounds. Volume 87. IARC Press, World Health Organisation, Lyon, France. - 8. Juhasz, A. L., Smith, E., Weber, J., Rees, M., Rofe, A., Kuchel, T., Sansom, L., Naidu, R. (2007). Comparison of in vivo and in vitro methodologies for the assessment of arsenic bioavailability in contaminated soils. Chemosphere 69: 961-966. - Juhasz, A. L., Weber, J., Smith, E., Naidu, R., Marchner, B., Rees, M., Rofe, A., Kuchel, T., Sansom, L. (2009) Evaluation of SBRC-Gastric and SBRC-Intestinal Methods for the Prediction of In Vivo Relative Lead Bioavailability in Contaminated Soils. Environ. Sci. Technol. 43: 4503-4509. - 10. Model WHS Regulations (2019) Model Work Health and Safety Regulations as at 15 January 2019. Released by SafeWork Australia and Published by the Parliamentary Counsel's Committee https://www.safeworkaustralia.gov.au/system/files/documents/1902/model-whs-regulations-15-january-2019.pdf - 11. Mushak, P (1991) Gastro-Intestinal Absorption of Lead in Children and Adults: Overview of Biological and Biophysico-Chemical Aspects, Chemical Speciation & Bioavailability, 3:3-4, 87-104, DOI: 10.1080/09542299.1991.11083160 - 12. National Health and Medical Research Council (NHMRC) (2011) Australian Drinking Water Guidelines. Australian Government. - 13. NEPC (2013a) Assessment of Site Contamination: Schedule B4 Site-specific Health Risk Assessment Methodology. National Environment Protection Council, Adelaide - 14. NEPC (2013b) Assessment of Site Contamination: Schedule B1 Investigation Levels for Soil and Groundwater. National Environment Protection Council, Adelaide - 15. NEPC (2013c) Guidance note Lead: Supplementary information to Schedule B7 section 5.4. NEPM Toolbox. http://www.nepc.gov.au/nepms/assessment-site-contamination/toolbox - 16. NEPC (2013d) Guideline on derivation of health-based investigation levels. National Environment Protection Council, Adelaide - 17. NHMRC (2016) Managing individual exposure to lead in Australia A guide for health professionals. Canberra: National Health and Medical Research Council - 18. NHMRC (2015) NHMRC Information Paper: Evidence on the Effects of Lead on Human Health. National Health and Medical Research Council, Australian Government. - 19. SafeWork Australia (2013) Lead (Inorganic) https://www.safeworkaustralia.gov.au/system/files/documents/1702/lead-inorganic.pdf - 20. SafeWork NSW lead work guidance (2019) https://www.safework.nsw.gov.au/hazards-a-z/hazardous-chemical/lead-work accessed 20 September 2019. - 21. Smith, E.; Kempson, I. M.; Juhasz, A. L.; Weber, J.; Rofe, A.; Gancarz, D.; Naidu, R.; McLaren, R. G.; Grafe, M. (2011) In vivo in vitro and XANES spectroscopy assessments of lead bioavailability in contaminated periurban soils. Environ. Sci. Technol. 45: 6145–6152. - 22. US EPA (1989) Risk Assessment Guidance for Superfund, Volume I. Human Health Evaluation Manual (Part A) - 23. US EPA (1994) Guidance Manual for the IEUBK model for Lead in Children. Office of Solid Waste and Emergency Response (OSWER) 9285.7-15-1. EPA: Washington, DC, 1994. - 24. US EPA (2002) Supplemental guidance for developing soil screening levels for superfund sites. OSWER 9355.4-24. EPA: Washington, DC, 2002. - 25. US EPA (2003a) Recommendations of the technical review workgroup for lead for an approach to assessing risks associated with adult exposures to lead in soil. EPA-540-R-03-001. - 26. US EPA (2003b) Assessing Intermittent or Variable Exposures at Lead Sites. OSWER #9285.7-76. November 2003. https://semspub.epa.gov/work/HQ/176288.pdf - 27. US EPA (2007). Estimation of relative bioavailability of lead in soil and soil-like material using in vivo and in vitro methods; OSWER 9285.7-77, EPA: Washington, DC, 2007 - 28. US EPA (2016) Recommendations for assessing short-term exposure scenarios involving lead at superfund sites. OLEM Directive 9285.6-54. - 29. US EPA (2017a) Update of the Adult Lead Methodology's Default Baseline Blood Lead Concentration and Geometric Standard Deviation Parameters and The Integrated Exposure Uptake Biokinetic Model's Default Maternal Blood Lead Concentration at Birth Variable. OLEM Directive 9285.6-56. May 2017. - 30. US EPA (2017b) Update for Chapter 5 of the exposure factors handbook: soil and dust ingestion. EPA/600/R-17/384F, EPA: Washington DC, 2017. - 31. US EPA)2021) Guidance for Sample Collection for In Vitro Bioaccessibility Assay for Arsenic and Lead in Soil and Applications of Relative Bioavailability in Human Health Risk Assessment - 32. World Health Organisation (WHO) (1995) Environmental Health Criteria 165 Inorganic Lead, International Program on Chemical Safety, World Health Organisation, Geneva. - 33. World Health Organisation (WHO) (2011) Lead in Drinking Water, Background Document for Development of WHO Guidelines for Drinking Water Quality. World Health Organisation, Geneva. #### 14. Limitations Ramboll prepared this letter report in accordance with the agreed scope of work for Regional NSW and in accordance with our understanding and interpretation of current regulatory standards in NSW, Australia. The report has derived health-based site-specific guideline values (SSGVs) for lead based on currently available data and information about the site. Where such data is inadequate, the report has used protective assumptions in the derivation. The report has also assumed that there will not be any change in exposure scenario in the future. The outcomes of this report are based on the assumptions and calculations/modelling used for assessment of exposures. The SSGVs provided in this report should be used according to the guideline provided and apply only to exposure scenarios discussed in this report. The conclusions are applicable to the extent these assumptions remain relevant for the site. The conclusions presented in this report represent Ramboll's professional judgment based on information made available during the course of this assignment and are true and correct to the best of Ramboll's knowledge as at the date of the assessment. Ramboll did not independently verify all of the written or oral information provided to Ramboll during the course of this assessment. While Ramboll has no reason to doubt the accuracy of the information provided to it, the report is complete and accurate only to the extent that the information provided to Ramboll was itself complete and accurate. The report must not be reproduced in whole or in part except with the prior consent of Ramboll Australia Pty Ltd and subject to inclusion of an acknowledgement of the source. No information as to the contents or subject matter of this document or any part thereof may be communicated in any manner to any third party without the prior consent of Ramboll Australia Pty Ltd. Whilst reasonable attempts have been made to ensure that the contents of this report are accurate and complete at the time of writing, Ramboll Australia Pty Ltd disclaims any responsibility for loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this report. This report does not purport to give legal advice. This advice can only be given by qualified legal advisors. APPENDIX 1 UNISA BIOACCESSIBILITY REPORT # University of South Australia # Assessment of Pb Bioaccessibility in Impacted Soil - Captains Flat Prepared for: Ramboll Pty Ltd Level 2, Suite 18 Eastpoint, 50 Glebe Rd, The Junction, NSW, 2291 Attention: Stephen Maxwell Telephone: 0478 658 194 Email: smaxwell@ramboll.com Prepared by: Dr Albert Juhasz Future Industries Institute University of South Australia Mawson Lakes Boulevard Mawson Lakes, SA 5095 Telephone: 08 8302 5045 Facsimile: 08 8302 3057 Email: Albert.Juhasz@unisa.edu.au Date of issue: 30 August 2021 #### **Important Notice** This report is confidential and was prepared exclusively for the client named above. It is not intended for, nor do we accept any responsibility for its use by any third party. The report is
Copyright to University of South Australia and may not be reproduced. All rights reserved. # **Table of Contents** | Introduction | 3 | |-------------------------------------|----| | Objectives | 3 | | Outcomes and Deliverables | 3 | | Project background | 4 | | Findings | 4 | | References | 13 | | Confidentiality | 13 | | Appendix 1 - Methodology | 14 | | Appendix 2 – Chain of Custody Forms | 15 | | Appendix 3 – Results and QA/QC | 25 | #### INTRODUCTION This report was prepared for Ramboll Pty Ltd to assess lead bioaccessibility in impacted soil. The bioaccessibility testing was conducted at the Future Industries Institute, based at the Mawson Lakes Campus of the University of South Australia (UniSA). UniSA's Flagship Institute focuses on building knowledge and capacity in core research strengths of physical chemistry and environmental science and management. The Institute has four distinct yet inter-related strands: Minerals and Resources; Energy and Advanced Manufacturing; Environmental Science and Engineering; and Bioengineering and Nanomedicine. The Institute aggregates and builds upon existing expertise and infrastructure from the Ian Wark Research Institute, the Mawson Institute and the Centre for Environmental Risk Assessment and Remediation. The vision for the Future Industries Institute aligns strongly with South Australian and National economic and research priorities by building a critical mass of trans-disciplinary research capacity focused on pressing real-world challenges. #### **OBJECTIVES** The objective of this assessment was to: - Assess the concentration of lead in the < 2 mm and < 250 μm soil particle size fractions; - Assess lead bioaccessibility in the < 250 μm soil particle size fraction using the gastric phase of the SBRC assay; - \blacksquare Assess lead bioaccessibility in the < 250 μm soil particle size fraction using the intestinal phase of the SBRC assay; and - Calculate lead relative bioaccessibility in the < 250 μm soil particle size fraction. #### **OUTCOMES AND DELIVERABLES** The expected outcome from this assessment was: - A report assessing the bioaccessibility of lead in soil. The report was to include: - $_{\odot}$ Assessment of lead concentration in the < 2 mm and < 250 μm soil particle size fractions; - $_{\odot}$ Assessment of lead bioaccessibility in the < 250 μm soil particle size fractions using an in vitro method; - Methodology procedures; and - o QA/QC protocols #### PROJECT BACKGROUND Soil testing was initiated at the invitation of Ramboll Pty Ltd for an assessment of lead bioaccessibility in impacted soil. Human exposure to a contaminant may be through a number of pathways including inhalation, dermal absorption and ingestion. For many metal contaminants, the most significant metal exposure pathway is via soil ingestion. Generally, soil ingestion results from the accidental or, in the case of children less than 5 years old, the incidental ingestion of soil (< 250 µm particle size fraction) via hand-to-mouth contact (Basta et al., 2001). In assessing contaminant exposure, it is often assumed that the contaminant is 100% bioaccessible / bioavailable, however, there is growing evidence to suggest that contaminant bioaccessibility / bioavailability in soil may be less than 100%. Therefore, incorporation of metal bioaccessibility / bioavailability may reduce the uncertainty in estimating exposure associated with the incidental ingestion of contaminated soil. Contaminant bioaccessibility may be estimated using *in vitro* assays that simulate processes that occur in the human body that lead to the release of contaminants from the soil matrix. A frequently used assay for the determination of contaminant bioaccessibility is the Solubility Bioaccessibility Research Consortium (SBRC) method (Kelly *et al.*, 2002). The gastric phase of this method (termed the Simplified Bioaccessibility Extraction Test [SBET] for arsenic or the Relative Bioavailability Leaching Procedure [RBALP] for lead) has been correlated to *in vivo* arsenic and lead relative bioavailability when determined using juvenile swine (Juhasz *et al.*, 2007; USEPA 2007). #### **FINDINGS** Total lead concentration for each sample is shown in Table 1 while lead bioaccessibility results are shown in Tables 2 (SBRC-G lead bioaccessibility), 3 (SBRC-I lead bioaccessibility) and 4 (summary of data). - Total lead concentration in the < 2 mm particle size fraction ranged from 1350 mg kg⁻¹ (QA201) to 104000 mg kg⁻¹ (R_S126a) (Table 1) with concentrations in the < 250 μm particle size fraction ranging from 1485 mg kg⁻¹ (QA201) to 91800 mg Pb kg⁻¹ (R_S126a) (Table 1). - Lead bioaccessibility determined using gastric phase extraction (SBRC-G) ranged from 1.6% (R_S119a) to 80.1% (R_S148a) (Tables 2 and 4). - When assays parameters were modified to reflect intestinal phase conditions (SBRC-I), lead bioaccessibility was reduced (0.1-40.0%), presumably as a result of re-adsorption of lead onto soil particles and / or precipitation at the neutral intestinal phase pH (Tables 3 and 4). - Lead relative bioaccessibility (Rel-SBRC-I) was calculated by adjusting the solubility of lead from contaminated soil by the solubility of lead acetate at the corresponding intestinal phase pH value. Lead relative bioaccessibility ranged from 0.9% (R_S119a) to ~100% (R_S148a) (Table 4). - Gastric phase lead bioaccessibility for QC1 was within an acceptable range for this reference material. **Table 1.** Total Pb concentration in the < 2 mm and < 250 μ m soil particle size fractions. | 0-11 | ID # | | < 2 mm soil particle size fraction | | < 250 µm soil particle size fraction | | | |---------|------------------------|--|------------------------------------|------------------------|--------------------------------------|-----------------------------------|--| | Soil | ID# | Pb (mg kg ⁻¹) Mean Pb (mg kg ⁻¹) | | | Pb (mg kg ⁻¹) | Mean Pb
(mg kg ⁻¹) | | | R_S117a | R_S117a-1
R_S117a-2 | 2610
2490 | 2550 | R_S117a-3
R_S117a-4 | 3270
3230 | 3250 | | | R_S118a | R_S118a-1
R_S118a-2 | 3620
3550 | 3585 | R_S118a-3
R_S118a-4 | 2710
2730 | 2720 | | | R_S119a | R_S119a-1
R_S119a-2 | 2240
2210 | 2225 | R_S119a-3
R_S119a-4 | 2600
2560 | 2580 | | | R_S120a | R_S120a-1
R_S120a-2 | 8630
8980 | 8805 | R_S120a-3
R_S120a-4 | 9090
50800† | 9090 | | | R_S121a | R_S121a-1
R_S121a-2 | 52100
51200 | 51650 | R_S121a-3
R_S121a-4 | 58100
40400 | 49250 | | | R_S122a | R_S122a-1
R_S122a-2 | 5610
5140 | 5375 | R_S122a-3
R_S122a-4 | 4420
5690 | 5055 | | | R_S123a | R_S123a-1
R_S123a-2 | 4220
4390 | 4305 | R_S123a-3
R_S123a-4 | 3870
3860 | 3865 | | | R_S124a | R_S124a-1
R_S124a-2 | 22100
22300 | 22200 | R_S124a-3
R_S124a-4 | 30600
30700 | 30650 | | | R_S125a | R_S125a-1
R_S125a-2 | 7420
7420 | 7420 | R_S125a-3
R_S125a-4 | 7540
7480 | 7510 | | | R_S126a | R_S126a-1
R_S126a-2 | 102500
105500 | 104000 | R_S126a-3
R_S126a-4 | 92600
91000 | 91800 | | | R_S145a | R_S145a-1
R_S145a-2 | 3210
3170 | 3190 | R_S145a-3
R_S145a-4 | 3130
3120 | 3125 | | | R_S149a | R_S149a-1
R_S149a-2 | 4370
4140 | 4255 | R_S149a-3
R_S149a-4 | 4440
4360 | 4400 | |---------|------------------------|----------------|-------|------------------------|----------------|-------| | R_S148a | R_S148a-1
R_S148a-2 | 44800
44000 | 44400 | R_S148a-3
R_S148a-4 | 49200
48900 | 49050 | | R_S147a | R_S147a-1
R_S147a-2 | 30400
30400 | 30400 | R_S147a-3
R_S147a-4 | 30800
30900 | 30850 | | R_S146a | R_S146a-1
R_S146a-2 | 1870
1920 | 1895 | R_S146a-3
R_S146a-4 | 1960
1970 | 1965 | [†]Data from sample R_S120a-4 was considered an outlier given Pb concentrations in R_S120a-1, R_S120a-2 and R_S120a-3 (plus XRF data) were ~5-fold lower. The value of 50800 mg kg⁻¹ was not used to calculate the average Pb concentration in R_S120a. Table 2. Lead bioaccessibility in contaminated soils determined using gastric phase extraction (SBRC-G). | Soil | Sample # | ICP-AES Pb | Soil:Solution
Ratio | Dilution | Gastric Phase Pb
Bioaccessibility | Mean Gastric Phase
Pb Bioaccessibility | |---------|----------------------|-----------------------|------------------------|----------|--------------------------------------|---| | | | (mg l ⁻¹) | | | (mg kg ⁻¹) | (mg kg ⁻¹) | | R_S117a | S117a-G1
S117a-G2 | 0.221
0.227 | 100
100 | 10
10 | 221
227 | 224 | | R_S118a | S118a-G1
S118a-G2 | 1.99
2.03 | 100
100 | 10
10 | 1990
2030 | 2010 | | R_S119a | S119a-G1
S119a-G2 | 0.042
0.042 | 100
100 | 10
10 | 42
42 | 42 | | R_S120a | S120a-G1
S120a-G2 | 5.11
6.21 | 100
100 | 10
10 | 5110
6210 | 5660 | | R_S121a | S121a-G1
S121a-G2 | 30.9
29.6 | 100
100 | 10
10 | 30900
29600 | 30250 | | R_S122a | S122a-G1
S122a-G2 | 3.70
3.69 | 100
100 | 10
10 | 3700
3690 | 3695 | | R_S123a | S123a-G1
S123a-G2 | 0.838
0.642 | 100
100 | 10
10 | 838
642 | 740 | | R_S124a | S124a-G1
S124a-G2 | 6.61
7.42 | 100
100 | 10
10 | 6610
7420 | 7015 | | R_S125a | S125a-G1
S125a-G2 | 5.07
4.73 | 100
100 | 10
10 | 5070
4730 | 4900 | | R_S126a | S126a-G1
S126a-G2 | 58.0
46.8 | 100
100 | 10
10 | 58000
46800 | 52400 | | R_S145a | S145a-G1
S145a-G2 | 1.09
1.07 | 100
100 | 10
10 | 1090
1070 | 1080 | | R_S146a | S146a-G1
S146a-G2 | 0.248
0.198 | 100
100 | 10
10 | 248
198 | 223 | |------------------|----------------------|----------------|------------|----------|----------------|-------| | R_S147a | S147a-G1
S147a-G2 | 0.752
0.799 | 100
100 | 10
10 | 752
799 | 776 | | R_S148a | S148a-G1
S148a-G2 | 39.6
39.0 | 100
100 | 10
10 | 39600
39000 | 39300 | | R_S149a | S149a-G1
S149a-G2
| 0.555
0.575 | 100
100 | 10
10 | 555
575 | 565 | | QA201 | QA201-G1
QA201-G2 | 0.817
0.830 | 100
100 | 10
10 | 817
830 | 824 | | QC1 [†] | QC1-G | 4.76 | 100 | 10 | 4760 | | | QC2 [‡] | QC2-G | <0.001 | - | 10 | <0.01 | | [†]QC1 comprised of a lead-contaminated (6400 mg Pb kg⁻¹) reference soil. [‡]QC2 comprised of SBRC gastric phase solution without soil addition (assay blank). Table 3. Lead bioaccessibility in contaminated soils determined using gastro-intestinal phase extraction (SBRC-I). | Soil | Sample # | ICP-AES Pb
(mg l ⁻¹) | Soil:Solution
Ratio | Dilution | Intestinal Phase Pb
Bioaccessibility
(mg kg ⁻¹) | Mean Intestinal
Phase Pb
Bioaccessibility
(mg kg ⁻¹) | |---------|----------------------|-------------------------------------|------------------------|----------|---|---| | R_S117a | S117a-l1
S117a-l2 | 0.010
0.009 | 100
100 | 10
10 | 10
9.0 | 9.5 | | R_S118a | S118a-l1
S118a-l2 | 0.247
0.200 | 100
100 | 10
10 | 247
200 | 224 | | R_S119a | S119a-I1
S119a-I2 | 0.003
0.002 | 100
100 | 10
10 | 3.0
2.0 | 2.5 | | R_S120a | S120a-l1
S120a-l2 | 1.98
2.18 | 100
100 | 10
10 | 1980
2180 | 2080 | | R_S121a | S121a-I1
S121a-I2 | 13.1
13.2 | 100
100 | 10
10 | 13100
13200 | 13150 | | R_S122a | S122a-l1
S122a-l2 | 1.28
1.14 | 100
100 | 10
10 | 1280
1140 | 1210 | | R_S123a | S123a-I1
S123a-I2 | 0.091
0.089 | 100
100 | 10
10 | 91
89 | 90 | | R_S124a | S124a-I1
S124a-I2 | 1.27
1.70 | 100
100 | 10
10 | 1270
1700 | 1485 | | R_S125a | S125a-I1
S125a-I2 | 0.702
0.526 | 100
100 | 10
10 | 702
526 | 614 | | R_S126a | S126a-I1
S126a-I2 | 26.4
25.4 | 100
100 | 10
10 | 26400
25400 | 25900 | | R_S145a | S145a-I1 | 0.181 | 100 | 10 | 181 | | | | S145a-I2 | 0.155 | 100 | 10 | 155 | 168 | |------------------|----------------------|----------------|------------|----------|----------------|-------| | R_S146a | S146a-I1
S146a-I2 | 0.033
0.032 | 100
100 | 10
10 | 33
32 | 33 | | R_S147a | S147a-I1
S147a-I2 | 0.085
0.098 | 100
100 | 10
10 | 85
98 | 92 | | R_S148a | S148a-I1
S148a-I2 | 20.7
18.5 | 100
100 | 10
10 | 20700
18500 | 19600 | | R_S149a | S149a-l1
S149a-l2 | 0.023
0.088 | 100
100 | 10
10 | 23
88 | 56 | | QA201 | QA201-I1
QA201-I2 | 0.114
0.137 | 100
100 | 10
10 | 114
137 | 126 | | QC1 [†] | QC1-I | 0.967 | 100 | 10 | 967 | | | QC2 [‡] | QC2-I | 0.019 | - | 10 | 0.19 | | [†]QC1 comprised of a lead-contaminated (6400 mg Pb kg⁻¹) reference soil. [‡]QC2 comprised of SBRC intestinal phase solution without soil addition (assay blank). **Table 4.** Total lead concentration and bioaccessible lead in contaminated soils (< $250 \mu m$ soil particle size fraction). | Soil | Total Pb | In vitro | Pb Bioacc. | Pb Bioacc.‡ | |---------|------------------------|-------------|------------------------|-------------| | | (mg kg ⁻¹) | Phase | (mg kg ⁻¹) | (%) | | R_S117a | 3250 | SBRC-G | 224 | 6.9 | | | | SBRC-I | 9.5 | 0.3 | | | | Rel-SBRC-I* | | 2.8 | | R_S118a | 2720 | SBRC-G | 2010 | 73.9 | | | | SBRC-I | 224 | 8.2 | | | | Rel-SBRC-I* | | 79.6 | | R_S119a | 2580 | SBRC-G | 42 | 1.6 | | | | SBRC-I | 2.5 | 0.1 | | | | Rel-SBRC-I* | | 0.9 | | R_S120a | 9090 | SBRC-G | 5660 | 62.3 | | | | SBRC-I | 2080 | 22.9 | | | | Rel-SBRC-I* | | 60.8 | | R_S121a | 49250 | SBRC-G | 30250 | 61.4 | | | | SBRC-I | 13150 | 26.7 | | | | Rel-SBRC-I* | | 70.9 | | R_S122a | 5055 | SBRC-G | 3695 | 73.1 | | | | SBRC-I | 1210 | 23.9 | | | | Rel-SBRC-I* | | 63.6 | | R_S123a | 3865 | SBRC-G | 740 | 19.1 | | | | SBRC-I | 90 | 2.3 | | | | Rel-SBRC-I* | | 22.5 | | R_S124a | 30650 | SBRC-G | 7015 | 22.9 | | | | SBRC-I | 1485 | 4.8 | | | | Rel-SBRC-I* | | 12.9 | | R_S125a | 7510 | SBRC-G | 4900 | 65.2 | | | | SBRC-I | 614 | 8.2 | | | | Rel-SBRC-I* | | 21.7 | | R_S126a | 91800 | SBRC-G | 52400 | 57.1 | | | | SBRC-I | 25900 | 28.2 | | | | Rel-SBRC-I* | | 75.0 | | R_S145a | 3125 | SBRC-G | 1080 | 34.6 | | | | SBRC-I | 168 | 5.4 | | | | Rel-SBRC-I | | 52.0 | | R_S146a | 1965 | SBRC-G | 223 | 11.3 | | | | SBRC-I
Rel-SBRC-I | 33 | 1.7
16.2 | |--------------|-------|----------------------|-------|-----------------| | R_S147a | 30850 | SBRC-G | 776 | 2.5 | | | | SBRC-I | 92 | 0.3 | | | | Rel-SBRC-I | | 2.9 | | R_S148a | 49050 | SBRC-G | 39300 | 80.1 | | | | SBRC-I | 19600 | 40.0 | | | | Rel-SBRC-I | | ~100 | | R_S149a | 4400 | SBRC-G | 565 | 12.8 | | _ | | SBRC-I | 56 | 1.3 | | | | Rel-SBRC-I | | 12.3 | | QA201 | 1485 | SBRC-G | 824 | 55.5 | | | | SBRC-I | 126 | 8.5 | | | | Rel-SBRC-I | | 82.0 | | $QC1^\Omega$ | 6400 | SBRC-G | 4760 | 74.4^{Ω} | | | | SBRC-I | 938 | 14.7 | | | | Rel-SBRC-I | | ~100 | [‡]Percentage lead bioaccessibility following gastric or gastrointestinal phase extraction was calculated by dividing the bioaccessible lead (SBRC-G or SBRC-I) by the total lead concentration multiplied by 100. ^{*}Lead relative bioaccessibility was calculated by adjusting the solubility of lead from contaminated soil by the solubility of lead acetate at the corresponding intestinal phase pH value. ^ΩLead bioaccessibility for the QC1 soil was within a suitable gastric phase extraction range for this reference material. #### REFERENCES - Basta, N. T., Rodriguez, R. R., Casteel, S. W. (2001). Bioavailability and risk of arsenic exposure by the soil ingestion pathway. *In* W T Frankenberger Jr (ed): *Environmental Chemistry of Arsenic*. Marcel Dekker, New York, 2001, 117-139. - Kelly, M. E., Brauning, S. E., Schoof, R. A., Ruby, M. V. (2002). Assessing oral bioavailability of metals in soils. Batelle Memorial Institute, Ohio. pp 75-78. - Juhasz, A. L., Smith, E., Weber, J., Rees, M., Rofe, A., Kuchel, T., Sansom, L., Naidu, R. (2007). Comparison of in vivo and in vitro methodologies for the assessment of arsenic bioavailability in contaminated soils. *Chemosphere* **69**: 961-966. - USEPA (2007). Estimation of relative bioavailability of lead in soil and soil-like material using in vivo and in vitro methods; OSWER 9285.7-77, EPA: Washington, DC, 2007 #### CONFIDENTIALITY We acknowledge the confidential nature of the results of this project and will treat the results and project reports with appropriate confidentiality and security. #### **APPENDIX 1 - METHODOLOGY** ## Soil samples Samples supplied by Ramboll Pty Ltd were oven-dried at 105° C for 24 hours and sieved to obtain 2 soil particle size fractions; < 2 mm and < $250~\mu m$. The < $250~\mu m$ soil particle size fraction was used to assess lead bioaccessibility. # Assessment of total lead concentration in the < 2 mm and < 250 μ m soil fractions Total lead concentration in the < 2 mm and < 250 μ m soil fractions were determined by ALS Geochemistry. A copy of the ALS Geochemistry analytical report is included in Appendix 3. ## Assessment of lead bioaccessibility in the < 250 µm soil particle size fraction A frequently used assay for the determination of contaminant bioaccessibility is the Solubility Bioaccessibility Research Consortium (SBRC) method (Kelly *et al.*, 2002). The gastric phase of this method (termed the Relative Bioavailability Leaching Procedure [RBALP] for lead) has been correlated to *in vivo* lead relative bioavailability when determined using juvenile swine (USEPA 2007). Contaminated soil and gastric solution (30.03 g l^{-1} glycine adjusted to pH 1.5 with concentrated HCl) were combined in polyethylene screw cap flasks at a soil:solution ratio of 1:100. The pH was noted then the flasks were incubated at 37°C, 40 rpm on a Ratek suspension mixer. After 1 hour incubation, the pH was determined and gastric phase samples (10 ml) were collected, filtered through 0.45 μ m filters and analysed by ICP-MS. Following gastric phase dissolution, the gastric solution was modified to the intestinal phase by adjusting the pH from 1.5 to 6.5-7.0 using 5 or 50% NaOH and by the addition of bovine bile (1750 mg I^{-1}) and porcine pancreatin (500 mg I^{-1}). After a further 4 hours incubation, intestinal phase samples (10 ml) were collected, filtered through 0.45 μ m filters and analysed by ICP-MS. Gastric and intestinal phase extractions were performed in triplicate for each soil sample. Lead bioaccessibility was calculated by dividing the gastric or intestinal phase extractable lead by the total soil lead concentration. Lead relative bioaccessibility was determined by adjusting the dissolution of lead from contaminated soils by the solubility of lead acetate at the corresponding pH value. All extracts were analysed by ICP-MS by ALS Environmental; a copy of the ALS Environmental analytical report is included in Appendix 3. #### QA/QC procedures ALS Environmental conducted the analysis for total and bioaccessible lead concentrations for all samples. ALS Environmental is a NATA accredited laboratory for the chemical testing of environmental materials. Quality Control results are reported in Appendix 2. Two additional samples were included in bioaccessibility assays for quality assurance and quality control. The samples consisted of: - a. QC1 Lead-contaminated (6400 mg Pb kg⁻¹) reference soil. - b. QC2 SBRC solution without soil addition (assay blank). # **APPENDIX 2 – CHAIN OF CUSTODY FORMS** Ramboll - Captains Flat Lead Management Plan - Derivation of Site Specific Guideline Values for Lead in Soil APPENDIX 2 SSGV - HIL A #### **LEAD MODEL FOR WINDOWS Version 2.0** These IEUBK Model results are valid as long as they were produced with an official, unmodified version of the IEUBK Model with a software certificate. While IEUBK Model output is generally written with three digits to the right of the decimal point, the true precision of the output is strongly influenced by least precise
input values. _______ Model Version: 2.0 Build1 User Name: Anand Chandra Date: 15 November 2021 Site Name: Captains Flat Operable Unit: Ramboll Australia Run Mode: Site Risk Assessment ----- #### # Air Data ______ ***** Air ***** Indoor Air Pb Concentration: 30.000 percent of outdoor. **Other Air Parameters:** | Month | Time
Outdoors
(hours) | Ventilation
Rate
(m³/day) | Lung
Absorption
(%) | Outdoor Air
Pb Conc
(µg Pb/m³) | |-------|-----------------------------|---------------------------------|---------------------------|--------------------------------------| | | (110urs) | (III /uay) | (70) | (µg Pb/III*) | | 6-12 | 1.000 | 3.216 | 32.000 | 0.100 | | 12-24 | 2.000 | 4.970 | 32.000 | 0.100 | | 24-36 | 3.000 | 6.086 | 32.000 | 0.100 | | 36-48 | 4.000 | 6.954 | 32.000 | 0.100 | | 48-60 | 4.000 | 7.682 | 32.000 | 0.100 | | 60-72 | 4.000 | 8.318 | 32.000 | 0.100 | | 72-84 | 4.000 | 8.887 | 32.000 | 0.100 | | | | | | | ***** Diet ***** | Month | Diet Intake(µg/day) | |-------|---------------------| | 6-12 | 5.100 | | 12-24 | 5.800 | | 24-36 | 6.700 | | 36-48 | 3.200 | | 48-60 | 3.600 | | 60-72 | 4.100 | | 72-84 | 4.700 | | | | ***** Drinking Water ***** **Water Consumption:** | Month | Water (L/day) | |-------|---------------| | 6-12 | 0.490 | | 12-24 | 0.308 | | 24-36 | 0.356 | | 36-48 | 0.417 | | 48-60 | 0.417 | | 60-72 | 0.417 | | 72-84 | 0.480 | Drinking Water Concentration: 0.700 µg Pb/L #### ***** Soil & Dust ***** **Multiple Source Analysis Used** Average multiple source concentration: 280.050 µg/g Mass fraction of outdoor soil to indoor dust conversion factor: 0.700 Outdoor airborne lead to indoor household dust lead concentration: 0.500 Use alternate indoor dust Pb sources? No | Month | Soil (µg Pb/g) | House Dust (μg Pb/g) | |-------|----------------|----------------------| | 6-12 | 400.000 | 280.050 | | 12-24 | 400.000 | 280.050 | | 24-36 | 400.000 | 280.050 | | 36-48 | 400.000 | 280.050 | | 48-60 | 400.000 | 280.050 | | 60-72 | 400.000 | 280.050 | | 72-84 | 400.000 | 280.050 | ***** Alternate Intake ***** | Month | Alternate (µg Pb/day) | |-------|-----------------------| | 6-12 | 0.600 | | 12-24 | 0.600 | | 24-36 | 0.600 | | 36-48 | 0.600 | | 48-60 | 0.600 | | 60-72 | 0.600 | | 72-84 | 0.600 | ****** Maternal Contribution: Infant Model ****** Maternal Blood Concentration: 1.000 μg Pb/dL *********** ### CALCULATED BLOOD LEAD AND LEAD UPTAKES: ************ | Month | Air
(μg/day) | Diet
(μg/day) | Alternate
(μg/day) | Water
(µg/day) | |-------|-----------------|------------------|-----------------------|-------------------| | 6-12 | 0.034 | 2.365 | 0.278 | 0.159 | | 12-24 | 0.057 | 2.557 | 0.265 | 0.095 | | 24-36 | 0.075 | 2.997 | 0.268 | 0.111 | | 36-48 | 0.093 | 1.467 | 0.275 | 0.134 | | 48-60 | 0.102 | 1.667 | 0.278 | 0.135 | | 60-72 | 0.111 | 1.912 | 0.280 | 0.136 | | 72-84 | 0.118 | 2.201 | 0.281 | 0.157 | | Month | Soil+Dust | Total | Blood | | | | (µg/day) | (µg/day) | (µg/dL) | | | 6-12 | 3.785 | 6.621 | 3.5 | | | 12-24 | 11.244 | 14.218 | 5.5 | | | 24-36 | 11.408 | 14.860 | 5.5 | | | 36-48 | 11.690 | 13.659 | 4.9 | | | 48-60 | 11.811 | 13.993 | 4.6 | | | 60-72 | 11.895 | 14.334 | 4.4 | | | 72-84 | 11.944 | 14.703 | 4.2 | | APPENDIX 3 SSGV -HIL C #### **LEAD MODEL FOR WINDOWS Version 2.0** These IEUBK Model results are valid as long as they were produced with an official, unmodified version of the IEUBK Model with a software certificate. While IEUBK Model output is generally written with three digits to the right of the decimal point, the true precision of the output is strongly influenced by least precise input values. ______ Model Version: 2.0 Build1 User Name: Anand Chandra Date: 15 November 2021 Site Name: Captains Flat Operable Unit: Ramboll Australia Run Mode: Site Risk Assessment ----- # Alternate Source Data From Recreational water expsoure # GI Values + Bioavailability Data Rec Water 50% # GI Values + Bioavailability Data Ν # GI Values + Bioavailability Data Yes # GI Values + Bioavailability Data Υ # GI Values + Bioavailability Data Yes # Soil/Dust Data Check ______ ***** Air ***** Indoor Air Pb Concentration: 0.000 percent of outdoor. Other Air Parameters: | Month | Time
Outdoors
(hours) | Ventilation
Rate
(m³/day) | Lung
Absorption
(%) | Outdoor Air
Pb Conc
(µg Pb/m³) | |-------|-----------------------------|---------------------------------|---------------------------|--------------------------------------| | 6-12 | 1.000 | 3.216 | 32.000 | 0.100 | | 12-24 | 2.000 | 4.970 | 32.000 | 0.100 | | 24-36 | 2.000 | 6.086 | 32.000 | 0.100 | | 36-48 | 2.000 | 6.954 | 32.000 | 0.100 | | 48-60 | 2.000 | 7.682 | 32.000 | 0.100 | | 60-72 | 2.000 | 8.318 | 32.000 | 0.100 | | 72-84 | 2.000 | 8.887 | 32.000 | 0.100 | ***** Diet ***** | Month | Diet Intake(µg/day | |-------|--------------------| | 6-12 | 5.100 | | 12-24 | 5.800 | | 24-36 | 6.700 | | 36-48 | 3.200 | | 48-60 | 3.600 | | 60-72 | 4.100 | | 72-84 | 4.700 | ***** Drinking Water ***** #### **Water Consumption:** Month Water (L/day) 6-12 0.490 0.308 12-24 24-36 0.356 36-48 0.417 48-60 0.417 60-72 0.417 72-84 0.480 Drinking Water Concentration: 0.700 µg Pb/L ***** Soil & Dust ***** | Month | Soil (µg Pb/g) | House Dust (µg Pb/g) | |-------|----------------|----------------------| | 6-12 | 700.000 | 0.000 | | 12-24 | 700.000 | 0.000 | | 24-36 | 700.000 | 0.000 | | 36-48 | 700.000 | 0.000 | | 48-60 | 700.000 | 0.000 | | 60-72 | 700.000 | 0.000 | | 72-84 | 700.000 | 0.000 | ***** Alternate Intake ***** | Alternate (µg Pb/day) | |-----------------------| | 0.600 | | 0.600 | | 0.600 | | 0.600 | | 0.600 | | 0.600 | | 0.600 | | | ****** Maternal Contribution: Infant Model ****** Maternal Blood Concentration: 1.000 μg Pb/dL *********** ## CALCULATED BLOOD LEAD AND LEAD UPTAKES: | Month | Air
(μg/day) | Diet
(μg/day) | Alternate
(µg/day) | Water
(µg/day) | |-------|-----------------------|-------------------|-----------------------|-------------------| | 6-12 | 0.004 | 2.362 | 0.278 | 0.159 | | 12-24 | 0.013 | 2.551 | 0.264 | 0.095 | | 24-36 | 0.016 | 2.990 | 0.268 | 0.111 | | 36-48 | 0.019 | 1.464 | 0.274 | 0.134 | | 48-60 | 0.020 | 1.664 | 0.277 | 0.135 | | 60-72 | 0.022 | 1.909 | 0.279 | 0.136 | | 72-84 | 0.024 | 2.198 | 0.281 | 0.157 | | Month | Soil+Dust
(µg/day) | Total
(µg/day) | Blood
(µg/dL) | | | | | | | | | | (µg/day) | μg/day) | (µg/dL) | |-------|----------|---------|---------| | 6-12 | 3.891 | 6.694 | 3.6 | | 12-24 | 11.544 | 14.466 | 5.5 | | 24-36 | 11.716 | 15.101 | 5.6 | | 36-48 | 12.009 | 13.899 | 5.0 | | 48-60 | 12.135 | 14.232 | 4.7 | |-------|--------|--------|-----| | 60-72 | 12.224 | 14.571 | 4.5 | | 72-84 | 12.276 | 14.936 | 4.2 | APPENDIX 4 SSGV HIL - D ## Calculations of Preliminary Remediation Goals (PRGs) for Soil in Nonresidential Areas U.S. EPA Technical Review Workgroup for Lead, Adult Lead Committee Version date 06/14/2017 EDIT RED CELLS | Variable | Description of Variable | | NHANES 2009- | from Analysis of | GSDi and PbBo | GSDi and PbBo
from Analysis of
NHANES III
(Phases 1&2) | |--------------------------------|--|---------------|--------------|------------------|---------------|---| | PbB _{fetal, 0.95} | Target PbB in fetus (e.g., 2-8 μg/dL) | μg/dL | 10 | 10 | 10 | 10 | | R _{fetal/maternal} | Fetal/maternal PbB ratio | | 0.9 | 0.9 | 0.9 | 0.9 | | BKSF | Biokinetic Slope Factor | μg/dL | 0.4 | 0.4 | 0.4 | 0.4 | | | | per
ug/day | | | | | | GSD _i | Geometric standard deviation PbB | | 1.8 | 1.7 | 1.8 | 2.1 | | PbB ₀ | Baseline PbB | μg/dL | 0.6 | 0.7 | 1.0 | 1.5 | | IR _S | Soil ingestion rate (including soil-derived indoor dust) | g/day | 0.025 | 0.025 | 0.025 | 0.025 | | AF _{S, D} | Absorption fraction (same for soil and dust) | | 0.15 | 0.15 | 0.15 | 0.15 | | EF _{S, D} | Exposure frequency (same for soil and dust) | days/yr | 240 | 240 | 240 | 240 | | AT _{S, D} | Averaging time (same for soil and dust) | days/yr | 365 | 365 | 365 | 365 | | PRG in Soil for no more than 5 | 5% probability that fetal PbB exceeds target PbB | ppm | 3,675 | 3,996 | 3,270 | 1,803 | ## Calculations of Blood Lead Concentrations (PbBs) and Risk in Nonresidential Areas U.S. EPA Technical Review Workgroup for Lead Version date 06/14/2017 | Variable | Description of Variable | Units | GSDI and PbBo
from Analysis of
NHANES 2009-
2014 | GSDI and PbBo
from Analysis of
NHANES 2007-
2010 | GSDI and PbBo
from Analysis of
NHANES 2004-
2007 | GSDI and PbBo
from Analysis of
NHANES III
(Phases 1&2) | |-----------------------------|--|---------------------|---|---|---|---| | PbS | Soil lead concentration | μg/g or ppm | 4000 | 3675 | 3675 | 3675 | | R _{fetal/maternal} | Fetal/maternal PbB ratio | | 0.9 | 0.9 | 0.9 | 0.9 | | BKSF | Biokinetic Slope Factor | μg/dL per
ug/dav | 0.4 | 0.4 | 0.4 | 0.4 | | GSD _i | Geometric standard deviation PbB | | 1.8 | 1.7 | 1.8 | 2.1 | | PbB ₀ | Baseline PbB | μg/dL | 0.6 | 0.7 | 1.0 | 1.5 | | IR_S | Soil ingestion rate (including soil-derived indoor dust) | g/day | 0.025 | 0.025 | 0.025 | 0.025 | | IR_{S+D} | Total ingestion rate of outdoor soil and indoor dust | g/day | - | | | | | W_S | Weighting factor; fraction of IR_{S+D} ingested as outdoor soil | | | | | | | K_{SD} | Mass fraction of soil in dust | | | | | | | AF _{S, D} | Absorption fraction (same for soil and dust) | | 0.15 | 0.15 | 0.15 | 0.15 | | EF _{S, D} | Exposure frequency (same for soil and dust) | days/yr | 240 | 240 | 240 | 240 | | AT _{S, D} | Averaging time (same for soil and
dust) | days/yr | 365 | 365 | 365 | 365 | | PbB _{adult} | PbB of adult worker, geometric mean | μg/dL | 4.5 | 4.3 | 4.6 | 5.1 | | PbB _{fetal, 0.95} | 95th percentile PbB among fetuses of adult workers | μg/dL | 10.8 | 9.3 | 10.9 | 15.6 | | PbB _t | Target PbB level of concern (e.g., 2-8 ug/dL) | μg/dL | 10.0 | 10.0 | 10.0 | 10.0 | | $P(PbB_{fetal} > PbB_{t})$ | Probability that fetal PbB exceeds target PbB, assuming lognormal distribution | % | 6.4% | 3.8% | 6.8% | 14.8% | Edit Red Cells # APPENDIX 8 CAPTAINS FLAT PRECINCT INTERIM WATER USE GUIDELINES ## CAPTAINS FLAT LEAD MANAGEMENT PLAN – INTERIM WATER USE GUIDELINES Project name Captains Flat Lead Management Plan Project no. **318001193** Recipient Department of Regional NSW Document type Technical Note Version 0 Date 25/11/2021 Prepared by Anand Chandra Checked by Stephen Maxwell Approved by Rowena Salmon #### **Summary** These Interim Water Use Guidelines should be read in conjunction with the Conceptual Site Model Captains Flat Lead Management Plan (Ramboll 2021) and have been prepared as guidance to manage risks associated with exposure to contaminants from historic mining during use of public waters at Captains Flat. It is anticipated that these interim guidelines will be reviewed after mine site rehabilitation and abatement measures proposed for public lands within Captains Flat. A water treatment plant and reticulated watermains provide potable water within Captains Flat. Ramboll understands treated public water quality is managed under the NSW Health Drinking Water Monitoring Program. The quality of treated public water supply is not considered further in these guidelines. Surface waters in the Precinct consist predominantly of the local water supply dam and the Molonglo River. They also consist of tributaries to Molonglo River such as Copper Creek and drainage lines primarily associated with acidic water discharges. A water use survey conducted in the Precinct indicated that surface waters are used mainly for primary contact recreation such as swimming and secondary contact recreation such as fishing, pet washing and livestock watering. Potable use of water (drinking and cooking) is primarily obtained from a reticulated water supply where available and rainwater tanks. Regular potable use of surface waters including untreated water from the local water supply dam should generally be avoided. However, exposure risks associated with contaminants from historic mining practices that may occur through occasional potable use of untreated water from the local water supply dam are low. A summary of the maximum frequencies and durations for use of Precinct surface waters (Local water supply dam, Molonglo River and Copper Creek) to limit risk from exposure to contaminants associated with historic mining practices to acceptable levels are provided in **Table 6-1** of this report. The recommended frequencies and durations are not different from the current usage pattern as indicated by the water use survey. Hence there may not be a need to alter the current usage pattern of surface waters in the Precinct. However, contact with acidic discharge waters which are associated with discoloured water and/or sediments (yellow-orange) should be avoided where possible. Responses to the water use survey indicate that groundwater within the Precinct is currently not being extracted for any use; however, any future extraction bore should be licensed and water quality tested to assess suitability for the intended use. ## **CONTENTS** | Summ | nary | 1 | |------------------|--|-----------------------------------| | 1. | Introduction | 3 | | 2. | Objectives | 3 | | 3. | Exposure Pathways | 3 | | 4.
4.1 | Exposure Adjusted Recreational Guideline Value Precinct Groundwater | 4
Error! Bookmark not defined. | | 5. | Exposure Assessment | 6 | | 6. | Interim Water Use Guidelines | 11 | | 7. | Uncertainties | 15 | | 8. | Conclusion | 16 | | 9. | References | 16 | | 10. | Limitations | 17 | ## **APPENDICES** Appendix 1 Validation of Exposure Adjusted Recreational Guideline value #### 1. Introduction A water use survey was recently conducted to better understand how surface water is being used within the Precinct. The survey results generally indicates that exposure to surface waters within the Precinct occurs via primary and secondary contact recreational activities such as swimming, fishing, agricultural use and washing of pets. There is some indication that untreated water from the water supply dam is being used for drinking and/or potable purposes during camping in the area. Regular potable use of untreated surface waters within the Precinct is not recommended and residents should rely on reticulated water and/or rainwater where available. Surface waters within the Precinct consists of: - 1) Local water supply dam - 2) Molonglo River - 3) Copper Creek - Various drainage lines such as main adit spring, acidic discharge drainage and smaller tributaries. The water use survey also indicates that groundwater within the Precinct is not being used for any purposes. The water use guidelines developed in this report therefore considers potential exposures to the above surface water bodies. Additional consideration is included for potential future exposures to groundwater. Recommendations are provided to limit exposure risks to contaminants associated with historic mining as identified in the Conceptual Site Model Captains Flat Lead Management Plan (Ramboll 2021) and do not apply to any other risk (eg: biological contamination). #### 2. Objectives The objective of this report is to develop interim guidelines that appropriately limit contaminant exposure risks related to historic mining during use of public water within the Precinct. #### 3. Exposure Pathways Exposure pathways (identified from water use survey) relevant for surface water use guidelines presented in this report are: - Primary contact recreational: - Swimming adults and children are likely to swim in surface waters at locations which are suitable for swimming. - Recreational drinking adults and children may also occasionally use water from the local water supply dam to drink and/or cook whilst camping. - Secondary contact recreational: - Fishing adults and children are likely to fish in surface waters at locations which are suitable for fishing. - Washing pets adults and children may use surface water to wash pets at suitable locations. While this may not be a recreational activity, exposure is considered to be similar to secondary contact recreational. - Washing pets adults and children may use surface water to wash pets at suitable locations. While this may not be a recreational activity, exposure is considered to be similar to secondary contact recreational. Livestock watering – adults may use surface water from suitable locations to provide stock watering needs. While this may not be a recreational activity, exposure is considered to be similar to secondary contact recreational. Frequent long-term use of surface waters from the Precinct for potable purposes such as drinking and cooking is not considered to be a complete exposure pathway (source-pathway-receptor) as residents in the precinct either have reticulated water or use rainwater tank. As noted above the only drinking/potable use scenario considered is while camping near the water supply dam. The water usage survey indicates that none of the respondents are extracting groundwater within the Precinct for potable or non-potable use. In addition, based on a search of the DR NSW Geoscience MinView GIS portal conducted by Ramboll on 25/11/2021 there are no registered groundwater bores within the Precinct. This data appears current to November 2018 and further confirmation of groundwater extraction within the Precinct is recommended. ### 4. Exposure Adjusted Recreational Guideline Values Exposure adjusted recreational guideline values (EARGV) were calculated for some contaminants for which default guideline values were exceeded, using the approach of NHMRC (2019). **Table 4-1** shows the derivation of EARGV and Appendix 1 provides a validation of the derivation approach against water use survey results. Table 4-1: Exposure adjusted recreational guideline values. | Tubic 7 II Exp | -1. Exposure adjusted recreational guidenne values. | | | | | | | | | | |----------------|---|---------------------------|----------------------------------|-------------------------------------|------------------------|---------------------------------------|--|--|--|--| | Analyte | Toxicity | TDI
(mg/kg-
bw/day) | Ingestion
volume
(L/event) | Event
Frequency
(events/year) | Body
Weight
(kg) | Proportion
of intake
from water | Exposure
Adjusted
Recreational
GV | Comments | | | | Cadmium | Threshold | 0.0007 | 0.2 | 150 | 70 | 0.1 | 0.06 | Based on NHMRC, NMMRC (2011) | | | | Cobalt | Threshold | 0.0003 | 0.2 | 150 | 70 | 0.1 | 0.03 | Based on USEPA Regional Screening
Levels. Assumed 10% of TDI | | | | Iron | Threshold | 0.7 | 0.2 | 150 | 70 | 0.2 | 119 | Based on USEPA Regional Screening
Levels. Assumed 20% of TDI | | | | Lead - child | Threshold | 0.0035 | 0.1 | 150 | 13 | 0.2 | 0.22 | Based on NHMRC, NMMRC
(2011). 1L/d based on children and
therefore 10% (100 mL) recreational
intake | | | | Lead - adult | Threshold | 0.0035 | 0.2 | 150 | 70 | 0.2 | 0.60 | Adopted child (infant) TDI from
NHMRC, NMMRC (2011) | | | | Manganese | Threshold | 10
mg/day | 0.2 | 150 | 70 | 0.1 | 12 | Based on NHMRC, NMMRC (2011) | | | | Zinc | Threshold | 0.3 | 0.2 | 150 | 70 | 0.1 | 26 | Based on USEPA Regional Screening
Levels Assumed 10% of TDI | | | TDI –
tolerable daily intake EARGVs were generally calculated using an exposure frequency of 150 events per year with an average ingestion rate of 200 mL/day (or per event, assuming one event per day). For lead the EARGV was based on exposure to children as the most sensitive receptor, which included 150 events per year with an average ingestion rate of 100 mL/day. Therefore, adults were assumed to have incidental ingestion of 30 L of water per year while children were assumed to have 15 L of water per year. Average water ingestion rates were assumed to be 10% of the drinking water ingestion rates provided in the Australian Drinking Water Guidelines (NHMRC, NRMMC 2011). The NHMRC, NRMMC (2011) states that the 'World Health Organization (WHO) has estimated that adults consume an average of 2 L of water per day, and this figure is believed to be an appropriate average figure for Australia'. For contaminants that have effects based on exposure to children e.g., lead, NHMRC, NRMMC (2011) uses 1 L as the average water intake rate. As the Precinct surface waters are not used for long-term potable purposes, the use of intake rates based on recreational exposure scenario is considered to be most appropriate. Note that while a conservative intake rate of 10% drinking water intake rate was used for calculating the EARGV, the Australian Exposure Factors Guidance (enHealth 2012) provides more realistic recommendations for incidental water ingestion rates by adults and children in a recreational water exposure scenario. As the Australian Drinking Water Guidelines are based on average water intake volumes, average intake rates from enHealth (2012) was adopted in this assessment. ### 5. Exposure Assessment #### 5.1 Exposure Assessment based on Contaminant Concentrations Water quality data were collected from various different surface waters present in the Precinct. The following summarises the results of total metal concentrations screened against EARGV: - Molonglo River no exceedance at any sampling location - Local water supply dam no exceedance at any location - Copper Creek exceedances were found - Drainage lines and other tributaries to Molonglo River exceedances were found The exceedances found within Copper Creek and drainage lines are further summarised and discussed in Table 5-1 below. The maximum magnitude of exceedance of the recreational guideline for any of the metals listed is considered to be low (7-times exceeded for lead). Furthermore, the higher metal concentrations in drainage lines appear to be associated with acidic discharge and such locations are not suitable for recreational water activities. Where drainage lines discharge into Molonglo River, no downstream exceedance is noted most likely due to change in pH (and chemistry) within the river together with dilution. Where drainage lines enter Copper Creek, some exceedance of lead EARGV are noted. As the drainage lines are not suitable locations for recreational activities, with restricted access especially for young children, any potential exposure would be considered to be rare or infrequent. Copper Creek however is accessible by landowners only (not general public) and has potential for secondary contact recreational activities. Table 5-1: Metal concentrations and locations where recreational guideline values were exceeded together with potential for exposure. | Metals | Concen | trations (| mg/L) | | | | | | | |-----------------|--------|------------|-------|----|------|-----|---|--|--| | | Cd | Со | Fe | Mn | Pb | Zn | Notes | Potential for
Exposure | | | Rec
Criteria | 0.06 | 0.03 | 119 | 12 | 0.2 | 26 | | | | | SW5 | 0.1 | 0.086 | 150 | | 1.2 | 120 | Location is the main adit spring which feeds directly into Molonglo River via a 50 m long channel. No exceedances noted in downstream samples from Molonglo River. There is no public access as it is located behind the STP. Any access and therefore contact is expected to be minimal (incidental) and not likely to be suitable for swimming or any other recreational water activity | Rare / infrequent -
secondary contact | | | SW6 | | | | | 0.29 | | Part of Copper Creek downstream from the rail corridor. The area has little or no public access and not likely to be suitable for swimming or any other recreational water activity | Rare / infrequent -
secondary contact | | | SW7 | | | | | 0.3 | | Part of Copper Creek upstream from the rail corridor. This area is part of private land used for rural residential / hobby farm with pigs, goats and chickens. There is no public access, but potential exists for secondary contact of site users with surface water relating to irrigation, pet washing and stock watering. The location is not likely to be suitable for frequent swimming activities. | Frequent -
secondary contact | | | SW8 | 0.11 | 0.04 | | | 1.2 | 67 | Part of drainage line downstream from the rail corridor leading into Copper Creek. The area has little or no public access and not likely to be suitable for swimming or any other recreational water activity | Rare / infrequent -
secondary contact | | | SW9 | 0.16 | 0.04 | | | 1.3 | 95 | Part of drainage line upstream from the rail corridor leading into Copper Creek. The area has little or no public access and not likely to be suitable for swimming or any other recreational water activity | Rare / infrequent -
secondary contact | | | SW12 | | 0.13 | | 14 | | 67 | Part of a drainage line leading into Molonglo River. The area is accessible to the public but is not suitable for any recreational water activity including swimming, fishing, pet washing or livestock watering. Any contact with waters in this drainage line is expected to be incidental. | Rare / infrequent -
secondary contact | | #### 5.2 Precinct Groundwater Filtered groundwater concentrations of metals were collected from various locations in the Precinct. Assessment of the filtered concentrations against drinking water guidelines values and EARGV suggests that Precinct groundwater is unsuitable for direct use for potable and non-potable purposes. Filtered samples may under-represent metals in groundwater which may also be associated with mobile colloidal particles greater than the filter size $(0.45~\mu\text{m})$ and therefore can also be consumed via drinking and/or incidental ingestion during activities such as irrigation, stock watering and bathing/washing. Furthermore, groundwater quality was seen to vary across the Precinct and therefore groundwater concentrations of metals at any future extraction bore cannot be predicted. Any future extraction bores must be appropriately licensed and water quality tested to verify suitability for the intended use. #### 5.3 Exposure Assessment Based on Intake Volume An exposure assessment has been completed comparing incidental intake volumes for exposure pathways developed integrating water usage survey results against Tolerable Daily Intakes (TDIs) adopted in development of the EARGV. The total mean incidental water intake volumes (30L/year for adults and 15 L/year for children) are considered to be safe intake volumes that will not exceed the proportion of TDI (tolerable daily intake) allowed for water intake for each contaminant. Recommended exposure frequencies and durations were designed to yield lower mean intake volumes compared to that used in the derivation of EARGV, as well as providing a safety net for any higher exposure frequencies. The exposure assessment and recommended water use frequencies and durations are provided in **Table 5-2** and Table 5-3 for all considered exposure pathways except recreational drinking from the local water supply dam which is considered separately under Section 5.3.1. Table 5-2: Recommended recreational surface water exposure frequencies and durations for adults | Exposure media | Pathway | Туре | Receptor | Recommended
Exp Frequency
(events / year) | Recommended
Event Duration
(minutes per
event) | Mean Water
intake volume (L)
per event (hour) | Mean Yearly volume
intake (L) | Notes | |---|--------------------|----------------------|------------------------|---|--|---|----------------------------------|---| | Surface Water -
Molonglo River,
Local Water Supply
Dam and Copper
Creek | Swimming | Primary contact | Adults | 120 | 60 | 0.025 | 3 | The recommended exposure frequency has conservatively been put at 120
events per year and is higher than most exposure frequencies stated in the water use survey. Exposure duration has been assumed to be 1 hour per event and this is higher than the duration stated in the survey. Water intake rates per hour is based on enHealth (2012) recommended intake volumes during swimming for adults. | | | Fishing | Secondary contact | Adults | 120 | 60 | 0.0025 | 0.3 | The recommended exposure frequency has conservatively been put at 120 events per year and is higher than most exposure frequencies stated in the water use survey. Exposure duration has been assumed to be 1 hour per event and this is higher than durations described by survey respondents. Secondary contact intake volume has been adopted as 10% of primary contact intake volume. Note that Dorevitch et al. (2011) provides mean estimate of water ingestion during limited-contact recreation (canoeing, kayaking and fishing) on surface waters as approximately 3-4 mL. | | | Washing pets | Secondary contact | Adults | 240 | 60 | 0.0025 | 0.6 | The recommended exposure frequency has conservatively been put at 240 events per year and is higher than most exposure frequencies stated in the water use survey. Exposure duration has been assumed to be 1 hour per event and this is higher than durations described by survey respondents. Secondary contact intake volume has been adopted as 10% of primary contact intake volume. Note that Dorevitch et al. (2011) provides mean estimate of water ingestion during limited-contact recreation (canoeing, kayaking and fishing) on surface waters as approximately 3-4 mL. | | | Livestock watering | Secondary contact | Adults | 240 | 60 | 0.0025 | 0.6 | The recommended exposure frequency has conservatively been put at 240 events per year and is higher than majority exposure frequencies stated in the water use survey. Exposure duration has been assumed to be 1 hour per event and this is higher than durations described by survey respondents. Secondary contact intake volume has been adopted as 10% of primary contact intake volume. Note that Dorevitch et al. (2011) provides mean estimate of water ingestion during limited-contact recreation (canoeing, kayaking and fishing) on surface waters as approximately 3-4 mL. | | | | Total average surfac | ce water intake volume | 4.5
(6.75 for Copper Creek) | Based on the mean intake volumes, adults can safely engage in higher frequencies of exposure without exceeding the allowable daily intake of contaminants from recreational exposure. The recommended exposure frequencies are conservative and provides a level of safety net if exposure frequencies of any individuals get higher than recommended, especially if such individuals did not take part in the survey. | | | | Table 5-3: Recommended recreational surface water exposure frequencies and durations for children | Exposure media | Pathway | Туре | Receptor | Recommended
Exp Frequency
(events / year) | Recommended
Event Duration
(minutes per
event) | Mean Water
intake volume (L)
per event (hour) | Mean Yearly volume
intake (L) | Notes | |---|--------------------|---------------------|-----------------------|---|--|---|----------------------------------|--| | | Swimming | Primary contact | Children | 120 | 60 | 0.05 | 6 | The recommended exposure frequency has conservatively been put at 120 events per year and is higher than majority exposure frequencies stated in the water use survey. Exposure duration has been assumed to be 1 hour per event and this is higher than duration stated in the survey. Water intake rates per hour is based on enHealth (2012) recommended intake volumes during swimming for children. Note that rates are based on an hourly basis and intake rate is expected to be half if exposed only for 30mins. Also note that young children in the most sensitive age group are not likely to swim throughout the year and durations are expected to be shorter than adults. Based on this the recommended exposure duration for children is 30-60 mins. | | Surface Water -
Molonglo River,
Local Water Supply
Dam and Copper
Creek | Fishing | Secondary contact | Children | 120 | 60 | 0.005 | 0.6 | The recommended exposure frequency has conservatively been put at 120 events per year and is higher than majority exposure frequencies stated in the water use survey. Exposure duration has been assumed to be 1 hour per event and this is higher than duration stated in the survey. Secondary contact intake volume has been adopted as 10% of primary contact intake rate Note that Dorevitch et al. (2011) provides mean estimate of water ingestion during limited-contact recreation (canoeing, kayaking and fishing) on surface waters as approximately 3-4 ml. Children, especially young children in the most sensitive age group are unlikely to frequently engage in this activity and durations are expected to be shorter than adults. Based on this the recommended exposure duration for children is 30-60 mins. | | | Washing pets | Secondary contact | Children | 240 | 60 | 0.005 | 1.2 | The recommended exposure frequency has conservatively been put at 120 events per year and is higher than majority exposure frequencies stated in the water use survey. Exposure duration has been assumed to be 1 hour per event and this is higher than duration stated in the survey. Secondary contact intake volume has been adopted as 10% of primary contact intake rate. Note that Dorevitch et al. (2011) provides mean estimate of water ingestion during limited-contact recreation (canoeing, kayaking and fishing) on surface waters as approximately 3-4 mL. Children, especially young children in the most sensitive age group are unlikely to frequently engage in this activity and durations are expected to be shorter than adults. Based on this the recommended exposure duration for children is 30-60 mins. | | | Livestock watering | Secondary contact | Children | 0 | 0 | 0.005 | 0 | Children, especially young children in the most sensitive age group are unlikely to frequently engage in this activity and therefore no recommendations are provided | | | | Total average surfa | ce water intake volum | 7.8
(11.7 for Copper Creek) | Based on the mean intake volumes, children can safely engage in higher frequencies of exposure without exceeding the allowable daily intake of contaminants from recreational exposure. Note that a 30 min exposure in all scenarios considered will yield a mean water intake volume of ~4 L/year. The recommended exposure frequencies are conservative and provides a level of safety net if exposure frequencies of any individuals get higher than recommended, especially if such individuals did not take part in the survey. | | | | Exceedances were noted in Copper Creek, with lead concentrations (about 0.3 mg/L) exceeding the EARGV by about 1.5-times. Therefore, anyone undertaking recreational activities in Copper Creek would be expected to have lead intake at 1.5-times higher rate than comparative activities in either Molonglo River or Local water supply dam. This is equivalent to 1.5-times higher mean intake water volume. The following would apply to Copper Creek: - Adults total average surface water intake volume for Copper Creek would be 4.5 L/year x 1.5 = 6.75 L/year. - Children total average surface water intake volume for Copper Creek would be 7.8 L/year x 1.5 = 11.7 L/year. As both the estimated intake volumes for adults and children are below the target volumes, then adults and children undertaking recreational activities in Copper Creek are also considered to be safe. Note that the above volume estimates for Copper Creek includes swimming exposure, although it may not be practical to swim in the creek. The recommended exposure frequencies and durations are higher than the frequencies/durations stated in the water use survey for the majority of the participants. Therefore, there may not be a need to alter the current usage pattern of surface waters in the precinct. However, contact with acidic discharge waters which are associated with discolored water and/or sediments (yellow-orange) should be avoided. ### 5.3.1 Consumption of Water from the Water Supply Dam The water use survey results indicated that some residents may be drinking untreated water from the water supply dam while camping. This may primarily relate to use for cooking, beverages e.g. tea and direct consumption. The water use is expected to be supplemented by other sources of water and drinks and therefore
the following assumptions are considered to be reasonable for recreational drinking of dam waters: - Adults 1 L per day while camping adopted as 50% of average drinking water intake volume (2 L/day) defined by NHMRC, NRMMC (2011). 50% of the remaining intake is considered to be supplemented by other sources of water eg. bottled water, water from reticulated supply and other bottled drinks. - Children 0.5 L per day while camping adopted as 50% of average drinking water intake volume (1 L/day) defined by NHMRC, NRMMC (2011). A camping frequency of 10-times per year is considered to be a reasonable estimate of camping being conducted by members of the public at the dam. Based on the rates of recreational drinking water the following can be concluded: - Adults will consume about 10 L of untreated dam water. The total water intake volume allowing for incidental water ingestion from other possible recreational activities would be 14.5 L/year (10 L + 4.5 L). This total average volume of water ingestion is lower than that allowed for in derivation of EARGV, which is 30 L. - Children will consume about 5 L of untreated dam water. The total water intake volume allowing for incidental water ingestion from other possible recreational activities would be 12.8 L/year (10 L + 7.8 L). This total average volume of water ingestion is lower than that allowed for in derivation of EARGV, which is 15 L. #### 6. Interim Water Use Guidelines The recommended usage frequencies and duration of surface water in the precinct is summarised in Table 6-1. #### Note: - The water use guidelines consider exposure to users of the water such as adult and child residents. It does not consider exposure to pets, livestock or vegetation - The water use guidelines do not consider cumulative exposures from water on private land - Sediment related intake has not been considered for the water use guidelines. Sediment intake is considered to be negligible during primary and secondary contact activities and water use guidelines will also limit sediment exposure - No recommendations for consumptions rates of fish and/or crustacean (prawns/yabbies) caught from the precinct surface waters can be made at this stage. Tissue concentrations from edible portions of these local food items is required before any such recommendations can be made. Table 6-1: Summary of the interim water use guidelines. Note that frequencies and durations are total for all of the surface water bodies considered. | Table 6-1: Summary of the | Water Use | | nmended | | commended Du | | | | |--|--|-----------|-------------|----------------------|----------------------|---------------------|---|--| | Surface Water Body | Activity | Per month | Per
Year | Per event
(hours) | Per Month
(hours) | Per Year
(hours) | Recommendations | | | | Drinking
(everyday) | 0 | 0 | 0 | 0 | 0 | Members of the public (adults and children) should use reticulated water. | | | | Recreational
Drinking (Dam
water only) | - | 10 | - | 1 | 1 | Members of the public should limit use of untreated dam water to 5-10 L per year for potable purposes. The lower volume is applicable to children. | | | Local water supply dam, | Swimming | 10 | 120 | 0.5 - 1 | 5 - 10 | 60 - 120 | Members of the public should limit swimming in Precinct surface waters to 10-times per month for 30 to 60 minutes. The lower duration is applicable to children. | | | Molonglo River and Copper
Creek | Fishing | 20 | 240 | 0.5 - 1 | 5 - 10 | 120 - 240 | Members of the public should limit fishing in Precinct surface waters to 10-times per month for 30 to 60 minutes. The lower duration is applicable to children. | | | | Livestock
watering | 20 | 240 | 1 | 10 | 240 | Members of the public should limit use of Precinct surface waters for livestock watering to 10-times per month for 60 minutes. | | | | Pet Washing | 20 | 240 | 0.5 - 1 | 5 - 10 | 120 - 240 | Members of the public should limit use Precinct surface waters for pet washing to 10-times per month for 30 to 60 minutes. The lower duration is applicable to children. | | | Various drainage lines -
main adit spring, acidic
discharge drainage and
smaller tributaries. | None | 0 | 0 | 0 | 0 | 0 | Frequent contact with acidic discharge waters which are associated with discolored water and/or sediments (yellow-orange) should be avoided where possible | | Ramboll - Captains Flat Lead Management Plan - Interim Water Use Guidelines | Surface Water Body | Water Use | | Recommended
Frequency of Use | | commended Du | ration of Use | Bdeticus | | |--------------------|-------------------------|--------------------|--|----------------------|----------------------|---------------------|--|--| | | Activity | Activity Per month | Per
Year | Per event
(hours) | Per Month
(hours) | Per Year
(hours) | Recommendations | | | Groundwater | Potable and non-potable | · · | Exposure assessment will need to be conducted to determine suitability of any future use | | | | Any future groundwater extraction bore should be appropriately licensed with water quality tested to determine suitability for the intended use. | | #### 7. Uncertainties The exposure assessment conducted in this report uses mean water intake rates provided by Australian Exposure Factors Guidance. The recommended mean intake rates are derived by local and overseas data. While such rates are considered to be applicable to the general population, variations in intake rates can exist. The recommended water use frequencies and durations allows for a safety net that may account for any large variations in intake rates during recreational activities. Note that water intake rates during swimming provided by enHealth (2012) includes all outdoor activities and therefore using additional rates to account for intake during secondary contact recreational activities is very conservative. NHMRC, NRMMC (2011) allows for a 20% TDI for water sources of lead intake, as shown in **Table 7-1**. An estimate of lead daily intake (mg/day) is shown in for all sources of water intake, including incidental ingestion from primary and secondary recreational, recreational drinking and everyday drinking water. The concentrations adopted are for local water supply dam (0.017 mg/L) as a mid-point of historical concentration range of 0.03 - 0.003 mg/L (note recent Ramboll concentrations measured in dam waters were maximum of 0.005 mg/L total lead). Drinking water concentration (0.0007 mg/L) was obtained from NEPM (2013) as used in the derivation of relevant lead HILs. The calculated daily intake of lead from all sources of water does not exceed 20% of TDI and only contributes around 1% of TDI for adults and 3% for children. It is noted that NHMRC, NRMMC (2011) currently uses a tolerable daily intake value of 0.0035 mg/kg/day that was originally adopted by World Health Organisation. This TDI was withdrawn by WHO in 2010 (WHO 2010) but is adopted in this assessment in the absence of any other value or approach provided by NHMRC, NRMMC (2011). The effects of lead exposure have often been evaluated based on the blood lead content, which is generally considered to be the most accurate means of assessing exposure. The relationship between acceptable TDI and blood lead levels is generally not available, especially within Australia. OEHHA (2009) determined that a daily lead intake from water ingestion of 2.86 μ g/day corresponds to a 1 μ g/dL increase in blood lead level. In other words, 2.86 μ g/day can be used as a benchmark for daily oral intake from water that corresponds to a level of concern for neurobehavioral effects in children, designated as a decrease of 1 IQ point. The calculated daily intake of lead from all water sources are below the value of 2.86 μ g/day. Therefore, water intake (hence lead intake) from recommended water usage guidelines is not likely to cause significant change in blood lead levels for residents of the Precinct. Table 7-1: Tolerable daily intake (TDI) for lead allowed from all water sources. | Metal | TDI NHMRC, NRMMC | Child (13kg)
Intake (mg/day) | Adult (70kg)
Intake (mg/day) | Intake from all water sources
(20% of TDI) (mg/day) | | | | |-------|--------------------|---------------------------------|---------------------------------|--|-------|--|--| | | (2011) (mg/kg/day) | ilitake (llig/day) | Intake (mg/day) | Child | Adult | | | | Lead | 0.0035 | 0.0455 | 0.245 | 0.0091 | 0.049 | | | Table 7-2: Tolerable daily intake (TDI) for lead allowed from all water sources. | Receptor | Intake Source | Average
Yearly
Volume
(L/year) | Lead Conc
(mg/L) | Total Lead Intake from Water sources per year (mg/year) | Lead
Intake per
day
(mg/day) | % of
TDI | | | | |----------|--------------------------|---|---------------------|---|---------------------------------------|-------------|--|--|--| | Adult | Incidental ingestion | 4.5 | 0.017 | 0.0765 | 0.00021 | 0.09 | | | | | | Recreational drinking | 10 | 0.017 | 0.17 | 0.00047 | 0.2 | | | | | | Everyday drinking (2L/d) | 730 | 0.0007 | 0.511 | 0.0014 | 0.6 | | | | | | Te | otal | | | 0.0021 | 0.8 | | | | | Children | Incidental ingestion | 7.8 | 0.017 | 0.1326 | 0.00036 | 0.8 | | | | | | Recreational drinking | 5 | 0.017 | 0.085 | 0.00023 | 0.5 | |
| | | | Everyday drinking (1L/d) | 365 | 0.0007 | 0.2555 | 0.0007 | 1.5 | | | | | | Total | | | | | | | | | #### 8. Conclusion The report provides an assessment of exposure to Precinct surface waters by adults and children. Recommendations on the safe usage (frequency and duration) of surface waters is also provided, although based on water use survey results, a change in current usage pattern may not be required. While groundwater within the precinct is currently not being extracted, future extraction bores need to be licensed and water quality tested. Furthermore, edible tissue concentrations of fish and crustaceans need to be measured to assess if any controls on consumption rate is required. #### 9. References Dorevitch, S., Panthi, S., Huang, Y., Li, H., Michalek, A. M., Pratap, P., Wroblewski, M., Liu, L., Scheff, P. A. and Li, A. (2011). Water ingestion during water recreation. Water Research. 45 (5): 2020-2028 enHealth (2012) Australian Exposure Factor Guidance. Guidelines for assessing human health risks from environmental hazards. Department of Health and Ageing, GPO Box 9848, Canberra ACT 2601. Online ISBN: 978-1-74241-769-1 NHMRC, NRMMC (2011) Australian Drinking Water Guidelines Paper 6 National Water Quality Management Strategy. National Health and Medical Research Council, National Resource Management Ministerial Council, Commonwealth of Australia, Canberra. NHMRC (2019) Guidance on Per and Polyfluoroalkyl (PFAS) in Recreational Water, Canberra: National Health and Medical Research Council. OEHHA (2009) Public Health Goals for Chemicals in Drinking Water: Lead. April 2009. California Environmental Protection Agency. Office of Environmental Health Hazard Assessment. WHO 2010, Joint FAO/WHO Expert Committee on Food Additives (JECFA), Seventy-third meeting, Geneva, Summary and Conclusions, Issue 24. #### 10. Limitations Ramboll prepared this letter report in accordance with the agreed scope of work for Regional NSW and in accordance with our understanding and interpretation of current regulatory standards in NSW, Australia. The report has derived health-based recommendations for precinct surface water use based on currently available data and information about the site. Where such data is inadequate, the report has used protective assumptions in the derivation. The report has also assumed that there will not be any change in exposure scenario in the future. The outcomes of this report are based on the assumptions and calculations/modelling used for assessment of exposures. The interim water use guidelines provided in this report should be used according to the guideline provided and applies only to exposure scenarios discussed in this report. The conclusions are applicable to the extent these assumptions remain relevant for the site. Risks to site ecological receptors, pets or vegetation were not explicitly considered in this assessment. The conclusions presented in this report represent Ramboll's professional judgment based on information made available during the course of this assignment and are true and correct to the best of Ramboll's knowledge as at the date of the assessment. Ramboll did not independently verify all of the written or oral information provided to Ramboll during the course of this assessment. While Ramboll has no reason to doubt the accuracy of the information provided to it, the report is complete and accurate only to the extent that the information provided to Ramboll was itself complete and accurate. The report must not be reproduced in whole or in part except with the prior consent of Ramboll Australia Pty Ltd and subject to inclusion of an acknowledgement of the source. No information as to the contents or subject matter of this document or any part thereof may be communicated in any manner to any third party without the prior consent of Ramboll Australia Pty Ltd. Whilst reasonable attempts have been made to ensure that the contents of this report are accurate and complete at the time of writing, Ramboll Australia Pty Ltd disclaims any responsibility for loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this report. This report does not purport to give legal advice. This advice can only be given by qualified legal advisors. | Ramboll - Captains Flat Lead Management Plan – Interim Water Use Guidelines | | |---|-----| APPENDIX 1 | | | VALIDATION OF EXPOSURE ADJUSTED RECREATIONAL GUIDELINE VAL | .UE | | | | ### **Validation of Exposure Adjusted Recreational Guideline Values** **Table 1** shows the exposure assessment based on water use survey results. Average water intake volumes were calculated based on survey results and compared against average water intake volume used in exposure adjusted guideline values (**Table 2** and **Table 3**). The water intake volume used for exposure adjusted recreational guideline values is higher and therefore is conservative and protective of all possible routes of exposure and different receptors. As such, exposure adjusted recreational guideline values can be used for screening assessment of surface water quality of the precinct. Table 1: Exposure assessment based on water use survey. | • | Exposure assessment based on water use survey. Exp Frequency Event Duration Mean Water intake volume Mean Yearly | | | | | | | | |---------------------------|---|----------------------|------------------------|--------------------|------------------------|-------------------------|----------------------|--| | Exposure
media | Pathway | Туре | Receptor | (events /
year) | (minutes per
event) | (L) per event
(hour) | volume
intake (L) | Notes | | | Swimming | Primary
contact | Adults and
children | 120 | 10 | 0.05 | 6 | Survey suggests swimming for less than 10 times per month. Conservatively, this equals less than 120 times per year. Maximum duration stated in the survey was 60 minutes per month. This equates to about 6 minutes per event. A value of 10 minutes per event can be adopted, however note that event duration has not been included in 'exposure adjusted' recreation guideline values (GVs), hence does not affect final calculated value. Water intake rates per hour is based on enHealth (2012) recommended intake volumes for children. Corresponding intake rates of adults are 0.025 L/hr. Note that the adopted volumes assume swimming (and other secondary contact activities as shown below) occur for one hour. This is conservative as survey results suggests duration to be much shorter. Also note that young children in the most sensitive age group are not likely to swim throughout the year and durations are expected to be shorter than adults. | | Local water
supply dam | Fishing | Secondary
contact | Adults and
children | 120 | ND | 0.005 | 0.6 | Survey suggests less than 10-times per month. Conservatively, a yearly frequency of <120-times can be considered. Maximum duration of activity from survey was more than 60 minutes per month. Secondary contact intake volume has been adopted as 10% of primary contact intake rate. Note that Dorevitch et al. (2011) provides mean and upper confidence estimates of water ingestion during limited-contact recreation (canoeing, kayaking and fishing) on surface waters as approximately 3-4 mL and 10-15 mL respectively. Children, especially young children in the most sensitive age group are unlikely to frequently engage in this activity but are included to be conservative. | | | Washing pets | Secondary
contact | Adults and
children | 240 | ND | 0.005 | 1.2 | Maximum frequency from the survey was 21-30 times per month. Note that majority of the respondents reported frequency of less than 10-times per month. A representative value of 20-times per month was adopted. Children, especially young children in the most sensitive age group are unlikely to frequently engage in this activity but are included to be conservative. | | | Livestock
watering | Secondary
contact | Adults | 240 | ND | 0.005 | 1.2 | Maximum frequency from the survey was 21-30 times per month. Note that majority of the respondents reported frequency of less than 10-times per month. A representative value of 20-times per month was adopted. Children, especially young children in the most sensitive age group are unlikely to frequently engage in this activity. | | | Swimming | Primary
contact | Adults and
children | 120 | 10 | 0.05 | 6 | Survey suggests swimming for less than 10 times per month. Conservatively, this equals less than 120 times per year. Survey suggests maximum swimming duration of more than 30 minutes per month in total. A value of 10 minutes per event can be adopted, however note that event duration has not been included in 'exposure adjusted' recreation guideline values (GVs),
hence does not affect final calculated value. Children, especially young children in the most sensitive age group are unlikely to frequently engage in this activity. | | Molonglo River | Fishing | Secondary
contact | Adults | 240 | ND | 0.005 | 1.2 | Survey data suggests maximum fishing duration of more than 60 minutes per month. Maximum fishing frequency from the survey was 21-30 times per month. Note that majority of the respondents reported fishing for less than 10-times per month. A representative value of 20-times per month was adopted for Molonglo River. Children, especially young children in the most sensitive age group are unlikely to frequently engage in this activity but are included to be conservative. | | | Washing pets | Secondary
contact | Adults | 240 | ND | 0.005 | 1.2 | Maximum frequency from the survey was 11-20 times per month. Note that majority of the respondents reported frequency of less than 10-times per month. A representative value of 10-times per month was adopted. Children, especially young children in the most sensitive age group are unlikely to frequently engage in this activity but are included to be conservative. | | Groundwater | No pathway | | | | | | | None of the survey participants reported having groundwater bore | Table 2: Comparison of yearly incidental water intake volume for adults and children except for lead. | | | Approach | used for Exposure Adjusted Recreat | Local Water Supply Dam | Molonglo River | | |--------------------|-----------------------------|-------------------|------------------------------------|---|--|--| | Exposure Route | Receptor | Intake Volume (L) | Exposure Frequency per year | Total yearly water intake
volume (L) | Mean yearly water intake
volume (L) | Mean yearly water intake
volume (L) | | Swimming | | | | | 6 | 6 | | Fishing | Adults and children (except | 0.2 | 150 | 30 | 0.6 | 1.2 | | Pet Washing | for lead) | 0.2 | 150 | 30 | 1.2 | 1.2 | | Livestock watering | | | | | 1.2 | - | | Total | | 0.2 | 150 | 30 | 9 | 8.4 | Table 3: Comparison of yearly incidental water intake volume for children for lead. | | | Approach use | d for Exposure Adju | sted Recreational GVs | Local Water Supply Dam | Molonglo River | Note | | |--------------------|-------------|----------------------|-----------------------------------|---|--|--|---|--| | Exposure Route | Receptor | Intake
Volume (L) | Exposure
Frequency per
year | Total yearly water
intake volume (L) | Mean yearly water
intake volume (L) | Mean yearly water
intake volume (L) | | | | Swimming | | | | | 6 | 6 | Australian drinking water guidelines are based on average water intake volumes and therefore the mean yearly water intake volume is appropriate for comparison. Exposure adjusted | | | Fishing | Children | 0.1 | 150 | 15 | 0.6 | 1.2 | recreational GV for lead is based on the value derived for children assuming average water intake of 100 ml (10% of daily average drinking water consumption). The total yearly intake | | | Pet Washing | (lead only) | 0.1 | 130 | 13 | 1.2 | 1.2 | volume assumed in the exposure adjusted guideline for lead is below mean intake volume | | | Livestock watering | | | | | - | - | estimated from survey results. It is unlikely that young children in the most sensitive age group will swim for long durations and partake frequently in some of the secondary contact | | | Total | | 0.1 | 150 | 15 | 7.8 | 8.4 | recreational activities. The activity duration for the recreational GV has been assumed to be one hour with a frequency of 150 days per year (equates to 150 hours per year). enHealth (2012) recommends using a representative median swimming frequency (including all sport and outdoor activity) of 52 days/year (upper estimate of 150 days/year) for ≥5 years of age, with a duration of 0.5 hours/day for general population (equates to mean of 26 hours/year and upper estimate of 75 hours per year). For children aged <5 years a maximum value of 27 hours per year (2.25 hours per month) is recommended. Furthermore, enHealth (2012) states that only 18.7 % of Australian population participate in swimming for more than 53-times per year. Therefore, realistic upper estimates of yearly incidental water intake volumes are 3.75L (0.05 L/hour x 75hours) for ≥5 year olds and 1.4L (0.05 L/hour X 27hours) for <5 year olds. The assumption used in the derivation of exposure adjusted recreational GV for lead, applicable to children, is more conservative than these estimates. Note that the lead recreational value based on children has also been adopted for adults and is considered to be protective of all adults as well. Note that no intake volumes are included for livestock watering exposure as children, especially young children in the most sensitive age group are unlikely to frequently engage in this activity. | | #### Noto - The above assessment considers the worst-case scenario where the same adults or children undertake all possible activities based on results from the survey. - The assessment also suggests that individuals either are exposed to the local water supply dam or the Molonglo River, as exposure frequencies cited in Table 1 are considered to be maximum possible frequencies to any surface water body. In reality, individuals may get exposed to both sources of surface water. However, the total frequency of exposure to any surface water is considered to remain same. For example: While the calculations in Table 1 suggests that an individual only swims in the Molonglo River for 120 days of the year, that individual can also swim in the water supply dam for a fraction of that time. That hypothetical individual may for example swim for 60 days of the year in Molonglo River and 60 days in water supply dam. As the total frequency of exposure still remains same (60 + 60 = 120 days/yr), total intake volumes would also remain same. #### ND - no data/information; #### References: Dorevitch, S., Panthi, S., Huang, Y., Li, H., Michalek, A. M., Pratap, P., Wroblewski, M., Liu, L., Scheff, P. A. and Li, A. (2011). Water ingestion during water recreation. Water Research. 45 (5): 2020-2028 enHealth (2012) Australian Exposure Factor Guidance. Guidelines for assessing human health risks from environmental hazards. Department of Health and Ageing, GPO Box 9848, Canberra ACT 2601. Online ISBN: 978-1-74241-769-1 APPENDIX 9 CAPTAINS FLAT MEN'S SHED LEAD INVESTIGATION REPORT AND EXPOSURE ASSESSMENT Department of Regional NSW PO Box 344 Hunter Region Mail Centre 2310 NSW Attention: Paul McBain Delivered: by email Dear Paul, ## Captains Flat Men's Shed – Foxlow Street Captains Flat NSW Lead Investigation Report This report presents the findings of an investigation of lead at the property currently occupied by the Captains Flat Men's Shed, undertaken as part of the investigation of contaminants related to the historic loading and transport of ore concentrates in the rail corridor at Captains Flat. Investigation at the property comprised collection of samples as shown in **Table 1** and the attached figure (**Attachment 1**). Soil samples were collected by the NSW EPA in February 2021 and were selected to target areas of elevated lead determined using a field portable x-ray fluorescence metals analyser (fpXRF). Dust samples were collected 17 June 2021 using swabs and a high flow cyclonic vacuum by Ramboll. Paint samples were collected from building surfaces with hand tools on 4 August 2021 by Ramboll. Further detail is presented in the Captains Flat Surface Soil Testing Report (NSW EPA 2021) and the Conceptual Site Model Captains Flat Lead Management Plan (Ramboll 2021). **Table 1: Samples Collected** | Туре | Number of samples collected | |--------------------------------------|-----------------------------| | Soil | 2 | | Dust (from inside property) - swabs | 4 | | Dust (from inside property) - vacuum | 3 | | Paint | 3 | Sample locations are presented on a site features plan presented as **Attachment 1**. Date 25/11/2021 Ramboll Level 2, Suite 18 Eastpoint 50 Glebe Road PO Box 435 The Junction NSW 2291 Australia T +61 2 4962 5444 https://ramboll.com #### Results Sample results were compared against guidelines relevant for a commercial/industrial property which is relevant to the current site use. A tabulated assessment of sample results against relevant guidelines is
presented in summary as **Table 2**. Concentrations shown in **bold** are above the relevant guideline. Laboratory reports are provided in **Attachment 2**. Table 2: Summary lead concentrations relevant to health investigation levels | Туре | Guideline | Result | | | | | | |------------------------------------|--------------------------------|----------------------|-------------------------|-------------------|--|--|--| | Soil | 1500
(mg/kg) ¹ | ms-a
18 | ms-b
560 | | | | | | Dust Interior –
Floors (swab) | 1000
(μg/m²) ^{2,3} | MS_SWAB1 7111 | MS_SWAB2 | MS_SWAB3 | | | | | Dust Interior –
Floors (vacuum) | 1500
(mg/kg) ⁴ | MS_VAC1
360 | MS_VAC2
270 | MS_VAC3
300 | | | | | Dust Interior –
window sill | 5000
(μg/m²)³ | MS_SWAB4 | | | | | | | Paint | 0.1%5 | PAINT_01
<0.01 | PAINT_02
0.14 | PAINT_03
<0.01 | | | | ¹NEPM (2013) Schedule B1: Guideline on investigation levels for soil and groundwater. National Environment Protection (Assessment of Site Contamination) Measure 1999. Federal Register of Legislative Instruments F2013C00288 (HIL D - Commercial/Industrial, includes premises such as shops, offices, factories and industrial sites). Lead loading $(\mu g/m^2)$ = Total lead (μg) / sample area (m^2) . Lead concentrations in outdoor soil fall below adopted guidelines and indicate risks associated with lead in soil are low. The lead loadings ($\mu g/m^2$) in all floor swab samples exceed the adopted criteria and indicate higher risks from lead in floor dust may exist. The level of lead in dust samples however can be reported as a concentration (mg/kg), just like for outdoor soil. The soil Health Investigation Level adopted (HIL D) is a concentration-based guideline that represents a safe lead concentration for commercial/industrial users where lead exposure can occur from both outdoor soil and indoor dust. In the absence of elevated outdoor soil lead concentrations, the indoor dust concentrations from vacuum samples assessed against HIL D is a relevant indicator of cumulative risk associated with exposure to lead in soil and dust. All lead concentrations inside and outside the Men's Shed building were reported below HIL D and so adopting this approach indicates risks are low and acceptable. ² The dust swab results presented are lead loadings (µg lead/m²) and were calculated as follows: ³ AS 4361.2-1998 Guide to lead paint management – Residential and commercial buildings. ⁴ There are no guidelines specific to vacuum samples, however In the absence of elevated outdoor soil lead concentrations, it is appropriate for the indoor dust concentrations collected by vacuum to be compared with HIL D.. ⁵ Australian Government Department of the Environment, Lead Alert: the six step guide to painting your home, 5th Ed. 2016. Additionally, the criteria adopted in the assessment described above are appropriate for a generic industrial land use scenario and a more accurate assessment of risks can be achieved by considering how the Captains Flat Men's Shed is used. An exposure assessment that considers site specific details of frequency and duration of potential exposures at the Captains Flat Men's Shed is presented as **Attachment 3**. Based on the usage of the site the exposure assessment predicted that potential exposure for Men's Shed members to outdoor and indoor lead dust would be approximately three times lower than potential exposure during typical working hours on a commercial/ industrial site. Maximum lead concentrations observed at the Men's Shed were nine - ten times lower than site specific guideline values. Based on these lines of evidence the potential exposure risks from lead indoor dust and/or outdoor soil are considered to be low and acceptable. Lead in one external paint sample (PAINTO2) exceeded the criteria indicative of lead-based paints being present on buildings. Lead-based paints should be managed in accordance AS 4361.1-2017 Guide to hazardous paint management Part 1 Lead and other hazardous metallic pigments in industrial applications. For further information please contact the undersigned. Yours sincerely Stephen Maxwell Managing Consultant D+61 (2) 4962 5444 M+61 478 658 194 smaxwell@ramboll.com **Rowena Salmon** Principal Contaminated Land Specialist rsalmon@ramboll.com #### **Attachments** Attachment 1 - Site Features Plan Attachment 2 - Laboratory Reports Attachment 3 – Lead Exposure Assessment Captains Flat SES Compound #### Reference AS 4361.1-2017 Guide to hazardous paint management Part 1 Lead and other hazardous metallic pigments in industrial applications NSW EPA (2021) Captains Flat Surface Soil Testing Report Ramboll (2021) Conceptual Site Model Captains Flat Lead Management Plan #### Limitations Ramboll Australia Pty Ltd prepared this report in accordance with the scope of work as outlined in our proposal to DR NSW and in accordance with our understanding and interpretation of current regulatory standards. A representative program of sampling and laboratory analyses was undertaken as part of this investigation. While every care has been taken, concentrations of contaminants measured may not be representative of conditions between the locations sampled and investigated. We cannot therefore preclude the presence of materials that may be hazardous. Site conditions may change over time. This report is based on conditions encountered at the Site at the time of the report and Ramboll disclaims responsibility for any changes that may have occurred after this time. The conclusions presented in this report represent Ramboll's professional judgment based on information made available during the course of this assignment and are true and correct to the best of Ramboll's knowledge as at the date of the assessment. Ramboll did not independently verify all of the written or oral information provided to Ramboll during the course of this investigation. While Ramboll has no reason to doubt the accuracy of the information provided to it, the report is complete and accurate only to the extent that the information provided to Ramboll was itself complete and accurate. This report does not purport to give legal advice. This advice can only be given by qualified legal advisors. Attachment 1 - Site Features Plan Site boundary Sample locations - Dust swab and vacuum sample (floor) - Dust swab sample (window sill) - Paint sample - Soil sample (EPA) ### Exceedance criteria | Dust swab (µg/m²) | AS 4361.2 (1998) - Hard Floors | AS 4361.2 (1998) - Window Sill | | | | | | |---------------------|--------------------------------|--------------------------------|--|--|--|--|--| | Pb | 1,000 | 5,000 | | | | | | | Dust vacuum (mg/kg) | HIL D (NEPM) | | | | | | | | Pb | 1,500 | | | | | | | | Soil (mg/kg) | HIL D (NEPM) | | | | | | | | Pb | 1,500 | | | | | | | | Paint (%) | Aus Dept of Env (2016) | | | | | | | | Pb | 0.1 | | | | | | | Figure 1: Site Features Plan **Attachment 2 – Laboratory Reports** **CHAIN OF CUSTODY RECORD** Sydney Laboratory Unif F3 Bld.F. 16 Mars Rd, Lane Cove West, NSW 2066 ☐ Brisbane Laboratory Unit 1, 21 Smallwood Pl., Muramie, QLD 4172 08 9251 9600 EnviroSampleWA@eurofins.com Perth Laboratory Unit 2, 91 Leach Highway, Kewdale WA 5105 * Surcharges apply Sample Comments / Dangerous Goods Hazard Warning asiapac-accounts@ramboll.com □2Day* ⊡_{5 Day} Turnaround Time (TAT) 03 8564 5000 EnviroSampleVic@eurofins.com smaxwell@ramboll.com; ■ Welbourne Laboratory 2 Kingston Town Close, Oakleigh. VIC 3166 ibourke@ramboll.com Overnight (9am)* Temperature □3Day* Other (□1 Day* Time Jake Bourke Jake Bourke Jar (Glass or HDPE) 500mL PFAS Bottle Email for Invoice imail for Results Sampler(s) Time Date 121819 Stephen Maxwell Date Signature EDD Format (ESdat, EQuIS, Custom) Project Manage Signature Captains Flat Lead Management Plan 318001193 SYD | BNE | MEL | PER | ADL | NTL | DRW SYD | BIVE | MEL | PER | ADL | NTL | DRW Name 02 9900 8400 EnviroSampleNSW@eurofins.com ☐ Postal Project Name × × Total Lead × Project Ne ☐ Hand Delivered Matrix (Solid (S) Water (W)) S S S Total Counts Suite 18, 50 Glebe Road, The Junction, NSW 2291 Sampled Date/Time (dd/mm/yy hh::mm) 4/08/21 4/08/21 4/08/21 Ramboll Australia Pty Ltd Stephen Maxwell 0478 658 194 Page 1 of 1 Received By Received By Client Sample ID Courier (# 318001193 PAINT_03 PAINT_01 PAINT 02 Eurofins | mgt Laboratory Use Only Special Directions Purchase Order Contact Name Quote ID Ne Address Phone No 2 2 ce of Eurofins | mgt Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins | mgt Standard Terms and Eurofins Environment Testing Australia Pty Ltd trading as Eurofins | mgt Submission of samples to the laboratory will be deemed as accepta Report Ne Time Date Signature ## **Environment Testing** ABN: 50 005 085 521 www eurofins com au EnviroSales@eurofins.com Australia Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Sydney Unit F3. Building F 16 Mars Road NATA # 1261 Site # 18217 NATA # 1261 Site # 40017 in smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 40077 1/21 Smallwood Place NATA # 1261 Site # 20794 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 NATA # 1261 Site # 25079 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 ### Sample Receipt Advice Company name: Ramboll Australia Pty Ltd Contact name: Stephen Maxwell Project name: CAPTAINS FLAT LEAD MANAGEMENT PLAN Project ID: 318001193 5 Day Turnaround time: Date/Time received Aug 6, 2021 8:30 AM **Eurofins reference** 815203 ## Sample Information A detailed list of analytes logged into our LIMS, is included in the attached summary table. All samples have been received as described on the above COC.
COC has been completed correctly. N/A Attempt to chill was evident. Appropriately preserved sample containers have been used. All samples were received in good condition. Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times. Appropriate sample containers have been used. Sample containers for volatile analysis received with zero headspace. Split sample sent to requested external lab. Some samples have been subcontracted. N/A Custody Seals intact (if used). ## **Notes** #### Contact If you have any questions with respect to these samples, please contact your Analytical Services Manager: Andrew Black on phone: (+61) 2 9900 8490 or by email: AndrewBlack@eurofins.com Results will be delivered electronically via email to Stephen Maxwell - smaxwell@ramboll.com. Note: A copy of these results will also be delivered to the general Ramboll Australia Pty Ltd email address. ## **Environment Testing** Australia Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane Sydney Unit F3. Building F 1/21 Smallwood Place 16 Mars Road Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217 Fax: Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Auckland Christchurch 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 IANZ # 1290 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Address: Ramboll Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060 **Project Name:** CAPTAINS FLAT LEAD MANAGEMENT PLAN Project ID: 318001193 Order No.: 318001193 Received: Aug 6, 2021 8:30 AM Report #: 815203 Due: Aug 13, 2021 Phone: 02 9954 8118 Priority: 5 Dav 02 9954 8150 Stephen Maxwell **Contact Name:** **Eurofins Analytical Services Manager: Andrew Black** New Zealand #### Lead (% w/w) Sample Detail Melbourne Laboratory - NATA Site # 1254 Sydney Laboratory - NATA Site # 18217 Χ Brisbane Laboratory - NATA Site # 20794 Perth Laboratory - NATA Site # 23736 Mayfield Laboratory - NATA Site # 25079 **External Laboratory** Sample Date No Sample ID Sampling Matrix LAB ID Time PAINT 01 Aug 04, 2021 Paint N21-Au10998 Χ Paint Χ PAINT_02 Aug 04, 2021 N21-Au10999 PAINT 03 Aug 04, 2021 Paint N21-Au11000 Χ 3 **Test Counts** ## **Environment Testing** Ramboll Environ Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060 NATA Accredited Accreditation Number 1261 Site Number 18217 Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates. Attention: Stephen Maxwell Report 815203-S Project name CAPTAINS FLAT LEAD MANAGEMENT PLAN Project ID 318001193 Received Date Aug 06, 2021 | Client Sample ID Sample Matrix Eurofins Sample No. | | | PAINT_01
Paint
N21-Au10998 | PAINT_02
Paint
N21-Au10999 | PAINT_03
Paint
N21-Au11000 | |--|------|------|----------------------------------|----------------------------------|----------------------------------| | Date Sampled | | | Aug 04, 2021 | Aug 04, 2021 | Aug 04, 2021 | | Test/Reference | LOR | Unit | | | | | | | | | | | | Lead (% w/w) | 0.01 | % | < 0.01 | 0.14 | < 0.01 | #### Sample History Where samples are submitted/analysed over several days, the last date of extraction is reported. If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time. DescriptionTesting SiteExtractedHolding TimeLead (% w/w)SydneyAug 10, 20216 Months - Method: LTM-MET-3040 Metals in Waters Soils & Sediments by ICP-MS #### Australia Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Sydney Unit F3, Building F Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Fax: Lead (% w/w) Brisbane Perth 1/21 Smallwood Place 46-48 Banksia Road Murarrie QLD 4172 Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 20794 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290 ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Address: Ramboll Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060 **Project Name:** CAPTAINS FLAT LEAD MANAGEMENT PLAN Project ID: 318001193 Order No.: 318001193 Received: Aug 6, 2021 8:30 AM Report #: 815203 Due: Aug 13, 2021 Phone: 02 9954 8118 **Priority:** 5 Day 02 9954 8150 **Contact Name:** Stephen Maxwell **Eurofins Analytical Services Manager: Andrew Black** **New Zealand** ## Sample Detail | Melbourne Laboratory - NATA Site # 1254 | | |---|---| | Sydney Laboratory - NATA Site # 18217 | Х | | Brisbane Laboratory - NATA Site # 20794 | | | Perth Laboratory - NATA Site # 23736 | | Mayfield Laboratory - NATA Site # 25079 External Laboratory | LAIC | External Laboratory | | | | | | | | | |------|---------------------|--------------|------------------|--------|-------------|---|--|--|--| | No | Sample ID | Sample Date | Sampling
Time | Matrix | LAB ID | | | | | | 1 | PAINT_01 | Aug 04, 2021 | | Paint | N21-Au10998 | Χ | | | | | 2 | PAINT_02 | Aug 04, 2021 | | Paint | N21-Au10999 | Χ | | | | | 3 | PAINT_03 | Aug 04, 2021 | | Paint | N21-Au11000 | Χ | | | | | Test | Counts | | | | | 3 | | | | #### **Internal Quality Control Review and Glossary** #### General - 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request. - 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated. - 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated. - 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences. - 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds - 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise. - 7. Samples were analysed on an 'as received' basis. - 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results. - 9. This report replaces any interim results previously issued. #### **Holding Times** Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001). For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control. For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD #### Units mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres #### **Terms** Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis. LOR Limit of Reporting SPIKE Addition of the analyte to the sample and reported as percentage recovery. RPD Relative Percent Difference between two Duplicate pieces of analysis. LCS Laboratory Control Sample - reported as percent recovery. CRM Certified Reference Material - reported as percent recovery. Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water. **Surr - Surrogate** The addition of a like compound to the analyte target and reported as percentage recovery. **Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show comparison USEPA United States Environmental Protection Agency APHA American Public Health Association TCLP Toxicity Characteristic Leaching Procedure COC Chain of Custody SRA Sample Receipt Advice QSM US Department of Defense Quality Systems Manual Version 5.3 CP Client Parent - QC was performed on samples pertaining to this report NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within. TEQ Toxic Equivalency Quotient #### QC - Acceptance Criteria RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable: Results <10 times the LOR: No
Limit Results between 10-20 times the LOR: RPD must lie between 0-50% Results >20 times the LOR : RPD must lie between 0-30% Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected. $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$ #### **QC Data General Comments** - 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided. - 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples. - 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS. - 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike. - 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report. - 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt. - 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte. - 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS. - 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample. - 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data. Report Number: 815203-S #### Comments #### Sample Integrity Custody Seals Intact (if used) N/A Attempt to Chill was evident N/A Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No #### Authorised by: Emma Beesley Analytical Services Manager John Nguyen Senior Analyst-Metal (NSW) Glenn Jackson General Manager Final Report - this report replaces any previously issued Report - Indicates Not Requested - * Indicates NATA accreditation does not cover the performance of this service Measurement uncertainty of test data is available on request or please click here. Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received. Report Number: 815203-S # CHAIN OF CUSTODY RECORD Sydney Laboratory Unit F3 Bld.F, 16 Mars Rd, Lane Cove West, NSW 2066 07 3902 4600 EnviroSampleQLD@eurofins.com ☐ Brisbane Laboratory Unit 1, 21 Smallwood PI., Murarrie, QLD 4172 □ Perth Laboratory * Surcharges apply Sample Comments / Dangerous Goods Hazard Warning asiapac-accounts@ramboll.com □2 Day* ☑ 5 Day Requirements (Default will be 5 days) 03 8564 5010 EnviroSampleVic@eurofins.com smaxwell@ramboll.com 2 Kingston Town Close, Oakleigh, VIC 3166 Overnight (9am)* Temperature □1 Day* □3 Day* Other (☐ Melbourne Laboratory 粤 Time 용 PIOH 원 Other (Asbestos AS4964, WA Guidelines) -10 Jar (Glass or HDPE) 500mL PFAS Bottle 粤 16iv AOV Jm0# 200mL Amber Glass Email for Invoice mail for Result Sampler(s) Date Time 08 9251 9600 EnviroSampleWA@eurofins.com Unit 2, 91 Leach Highway, Kewidala WA 6105 Stephen Maxwell Date Signature EDD Format (ESdat, EQuIS, Custom) Project Manage (nZ ,iT Dissolved metals (As, Ba, Cd, Cr, Co, Cu, Fe, Hg, Pb, Mn, Mo, Ni, Se, Signature Captains Flat Lead Management Plan (UZ Total metals (As, Ba, Cd, Cr, Co, Cu, Fe, Hg, Pb, Mn, Mo, Ni, Se, Ti, Hardness 318001193 SYD | BNE | MEL | PER | ADL | NTL | DRW Name 02 9900 8400 EnviroSampleNSW@eurofins.com Total Dust × × × × X × × Total Lead 7 ☐ Postal bH' CEC' % clay (uz Project Name Project Ne Heavy metals (As, Ba, Cd, Cr, Co, Cu, Fe, Hg, Pb, Mn, Mo, Ni, Se, Ti, Hand Delivered (S) Water (W Total Counts Suite 18, 50 Glebe Road, The Junction, NSW 2291 Sampled Date/Time (dd/mm/yy hh::mm) 17/06/21 17/06/21 17/06/21 17/06/21 17/06/21 17/06/21 17/06/21 17/06/21 17/06/21 17/06/21 Ramboll Australia Pty Ltd Stephen Maxwell 0478 658 194 Received By Client Sample ID Courier (# 318001193 MS_SWAB2 MS_SWAB3 MS_SWAB4 CH_SWAB2 MS SWAB1 CH_SWAB1 CH SWAB3 MS_VAC1 MS_VAC2 MS_VAC3 Eurofins | mgt Laboratory Use Only Purchase Order Contact Name Special Direction Quote ID Ne Address Method of Shipment Phone Ne 휥 nce of Eurofins | mgt Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins | mgt Standard Terms and Eurofins Environment Testing Australia Pty Ltd trading as Eurofins | mgt MULLINI Submission of samples to the laboratory will be deeme Received By 6408 Report Ne d Time 7797 Date Signature SYD | BNE | MEL | PER | ADL | NTL | DRW CHAIN OF CUSTODY RECORD 02 9900 8400 Sydney Laboratory Unit F3 Bid.F, 16 Mars Rd, Lane Cove West, NSW 2056 EnviroSampleNSW@eurofins.com ☐ :Brisbane L.aboratory Unit 1, 21 Smallwood PI., Muramie, QLD 4172 * Surcharges apply Sample Comments / Dangerous Goods Hazard Warning asiapac-accounts@ramboll.com Requirements (Dofault will be 5 days II) ticked) □2 Day* ⊡5 Day Turnaround Time (TAT) 2 Kingston Town Close, Oakleigh, VIC 3166 03 8564 5000 EnviroSampleVic@eurofins.com smaxwell@ramboll.com Overnight (9am)* Temperature □3 Day* | | Welbourne Laboratory Other (□10ay* <u>li</u> 粤 무유 몽 무 원 HOLD 9 Jar (Glass or HDPE) 500mL PFAS Bottle 鸣 Isiv AOV Jm0# Email for Invoice Email for Results Date Time 08 9251 9600 EnviroSampleWA@eurofins.com Unit 2, 91 Leach Highway, Kewdale WA 6105 Pertils Laboratory Stephen Maxwell Date Signature EDD Format (ESdat, EQuIS, Custom) Project Manage Dissolved metals (As, Ba, Cd, Cr, Co, Cu, Fe, Hg, Pb, Mn, Mo, Ni, Se, Ti, Zn) Signature Captains Flat Lead Management Plan Total metals (As, Ba, Cd, Cr, Co, Cu, Fe, Hg, Pb, Mn, Mc, Ni, Se, Ti, Hardness 318001193 SYD | BNE | MEL | PER | ADL | NTL | DRW Name Total Dust × × × × X Total Lead S ☐ Postal pH, CEC, % clay Heavy metals (As, Ba, Cd, Cr, Co, Cu, Fe, Hg, Pb, Mn, Mo, Ni, Se, Ti, Zn) Project Name Project No Hand Delivered Matrix (Solid (S) Water (W) Analyses ted, please spec Total Counts Suite 18, 50 Glebe Road, The Junction, NSW 2291 Sampled Date/Time (dd/mm/yy hh:mm) 17/06/21 17/06/21 17/06/21 17/06/21 17/06/21 17/06/21 17/06/21 17/06/21 17/06/21 Ramboll Australia Pty Ltd Stephen Maxwell 0478 658 194 Received By Client Sample ID Courier (# RFS SWAB2 RFS_SWAB3 RFS_SWAB4 318001193 CH_SWAB4 CH_VAC2 RFS_SWAB CH_VAC3 RFS_VAC1 RFS_VAC2 CH_VAC1 Laboratory Use Only Eurofins | mgt Special Direction Purchase Order Contact Name Quote ID Ne Method of Shipment Phone No Address 2 9 Subtrission of samples to the laboratory will be deemed as acceptance of Eurofins I mgt Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins I mgt Standard Eurofins Environment Testing Australia Pty Ltd trading as Eurofins | mgt Report Ne Time 22.6.21 Date Signature SYD | BNE | MEL | PER | ADL | NTL | DRW 33 でいること Received By * Surcharges apply Requirements peraut will be 5 days If no technol Sample Comments / Dangerous Goods Hazard Warning asiapac-accounts@ramboll.com □2 Day* ⊡5 Day Melbourne Laboratory 2 Kingston Town Close, Oekleigh, VIC 3166 03 8564 5000 EnviroSampleVie@euroffns.com smaxwell@ramboll.com Overnight (9am)* ☐3 Day* □10ay* Other (鸣 무연 용 용 Hold Other (Asbestos AS4964, WA Guidelines) .-Jar (Glass or HDPE) 500mL PFAS Bottle 粤 40mL VOA vial Email for Invoice Handed over by Email for Results 08 9251 9600 EnviroSampleWA@eurofins.com Perth Laboratory Unit 2, 91 Leach Highway, Kewdale WA 6105 Stephen Maxwell ☐ Brisbane Laboratory Unit 1, 21 Smallwood Pl., Murarria, QLD 4172 07 3902 4600 EnviroSampleQLD@eurofins EDD Format (ESdat, EQuIS, Custom) Project Manage Dissolved metals (As, Ba, Cd, Cr, Co, Cu, Fe, Hg, Pb, Mn, Mo, Ni, Se, Ti, Zn) Captains Fiat Lead Management Plan Total metals (As, Ba, Cd, Cr, Co, Cu, Fe, Hg, Pb, Mn, Mo, Ni, Se, Ti, 318001193 Hardness Unit F3 Bld.F, 16 Mars Rd, Lane Cove West, NSW 2066 Total Dust × × × × × Total Lead bH' CEC' % clay D2 9900 8400 Heavy metals (As, Ba, Cd, Cr, Co, Cu, Fe, Hg, Pb, Mn, Mo, Ni, Se, Ti, $\Delta n)$ Project Name Project No Matrix (Solid (S) Water (W) Analyses ted, please spec **CHAIN OF CUSTODY RECORD** Suite 18, 50 Glebe Road, The Junction, NSW 2291 Sampled Date/Time (dd/mm/yy hh:mm) 17/06/21 17/06/21 17/06/21 17/06/21 17/06/21 17/06/21 17/06/21 17/06/21 Ramboll Australia Pty Ltd Stephen Maxweli 0478 658 194 Client Sample ID STP_SWAB2 STP_SWAB3 SWAB_QA01 STP_SWAB4 STP_VAC3 318001193 RFS_VAC3 STP_SWAB1 STP_VAC1 STP_VAC2 Special Directions Purchase Order Contact Name Quote ID Ne Phone Na Address 문 221612 Date mgt Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins | mgt Standard Signature SYD | BNE | MEL | PER | ADL | NTL | DRW Eurofins Environment Testing Australia Pty Ltd trading as Eurofins | mgt Jase Lecure . Received By
Temperature Report No 30 Time Time Date Time Date Signature SYD | BNE | MEL | PER | ADL | NTL | DRW Name Postal Hand Delivered Received By -aboratory Use Only Courrier (# × 17/06/21 SWAB_QA02 9 Total Counts Signature - 10 * Surcharges apply 8049 asiapac-accounts@ramboll.com □2 Day* Requirements (Default will be 5 days tacked) | Melbourne Laboratory 2 Kingston Town Close, Oakleigh, VIC 3166 03 8564 5000 EnviroSampleVio@eurofins.com Turnaround Time (TAT) ⊡5 Day Sample Comments / Dangere Goods Hazard Warning smaxwell@ramboll.com Overnight (9am)* Temperature Report Ne □10ay* □3 Day* Other (粤 Time 2 Jar (Glass or HDPE) 500mL PFAS Bottle C 굨 Email for Invoice Handed over by Email for Results 200mL Amber Glass 125mL Plastic Time 08 9251 9600 EnviroSampleWA@eurofins.com Date Time 250mL Plastic Unit 2, 91 Leach Highway, Kewdale WA 5105 1L Plastic 21612 Perth Laboratory Stephen Maxwell Date Date Signature 07 3902 4500 EnviroSampleCLD@eurofins.com ☐ Brisbane Laboratory Unit 1, 21 Smallwood Pl., Murarrie, QLD 4172 EDD Format (ESdat, EQuIS, Custom) Project Manage Stro I BNE | ME. | PER | ADL | NTL | DRW Signature Submission of samples to the laboratory will be deemed as acceptance of Eurofins | mgt Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins | mgt Standard Terms and Conditions unless agreed otherwise. (nZ ,iT Dissolved metals (As, Ba, Cd, Cr, Co, Cu, Fe, Hg, Pb, Mn, Mo, Ni, Se, Signature Captains Flat Lead Management Plan Total metals (As, Ba, Cd, Cr, Co, Cu, Fe, Hg, Pb, Mr, Mo, Ni, Se, Ti, Unit F3 Bid.F. 16 Mars Rd, Lane Cove West, NSW 2066 318001193 SYD | BNE | MEL | PER | ADL | NTL | DRW 02 9900 8400 EnviroSampleNSW@eurotins.com Name tauQ lateT Total Lead × × 8 ☐ Postal Sydney Laboratory pH, CEC, % clay Heavy metals (As, Ba, Cd, Cr, Co, Cu, Fe, Hg, Pb, Mn, Mo, Ni, Se, Ti, Zn) Project Name Project Ne Matrix (Solid (S) Water (W)) Hand Delivered Analyses ted, please spec Total Counts **CHAIN OF CUSTODY RECORD** Suite 18, 50 Glebe Road, The Junction, NSW 2291 Sampled Date/Time (dd/mm/yy hh:mm) 17/06/21 17/06/21 Ramboll Australia Pty Ltd Stephen Maxwell 0478 658 194 Client Sample ID Received By SWAB_BLANK 318001193 Courier (# SWAB RB Eurofins | mgt Laboratory Use Only Purchase Order Contact Name Special Direction Company Address Quote ID No Phone No Method of Shipment 물 2 00 Eurofins Environment Testing Australia Pty Ltd trading as Eurofins | mgt ABN: 50 005 085 521 www eurofins com au EnviroSales@eurofins.com **New Zealand** Australia Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 Clink F3, Buildin American F3, Buildin Lane Cove We Site # 1254 Sydney Unit F3. Building F NATA # 1261 Site # 18217 NATA # 1261 Site # 40017 in smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 40017 1/21 Smallwood Place NATA # 1261 Site # 20794 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 NATA # 1261 Site # 25079 Christchurch Auckland 35 O'Rorke Road 43 Detroit Drive Penrose, Auckland 1061 Phone: +64 9 526 45 51 Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290 #### Sample Receipt Advice Company name: Ramboll Australia Pty Ltd Contact name: Stephen Maxwell Project name: CAPTAINS FLAT LEAD MANAGEMENT PLAN Project ID: 318001193 Turnaround time: Date/Time received 5 Day Jun 23, 2021 12:30 PM **Eurofins reference** 804978 #### Sample Information A detailed list of analytes logged into our LIMS, is included in the attached summary table. All samples have been received as described on the above COC. COC has been completed correctly. N/A Attempt to chill was evident. Appropriately preserved sample containers have been used. All samples were received in good condition. Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times. Appropriate sample containers have been used. Sample containers for volatile analysis received with zero headspace. Split sample sent to requested external lab. Some samples have been subcontracted. N/A Custody Seals intact (if used). #### **Notes** #### Contact If you have any questions with respect to these samples, please contact your Analytical Services Manager: Andrew Black on phone: (+61) 2 9900 8490 or by email: AndrewBlack@eurofins.com Results will be delivered electronically via email to Stephen Maxwell - smaxwell@ramboll.com. Note: A copy of these results will also be delivered to the general Ramboll Australia Pty Ltd email address. #### Australia Site # 1254 Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217 Fax: Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com Ramboll Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060 **Project Name:** **Company Name:** Address: CAPTAINS FLAT LEAD MANAGEMENT PLAN Project ID: 318001193 Order No.: 318001193 Received: Jun 23, 2021 12:30 PM Report #: 804978 Due: Jun 30, 2021 Phone: 02 9954 8118 **Priority:** 5 Day 02 9954 8150 **Contact Name:** Stephen Maxwell **Eurofins Analytical Services Manager: Andrew Black** | | | Sa | mple Detail | | | HOLD | Lead (% w/w) | |---|------------------|--------------|------------------|--------|-------------|------|--------------| | | ourne Laborato | | | | | | | | | ney Laboratory | | | | | Х | Х | | | bane Laborator | | | | | | | | | h Laboratory - N | | | | | | | | | field Laboratory | | 25079 | | | | | | | rnal Laboratory | | | | 1 | | | | No | Sample ID | Sample Date | Sampling
Time | Matrix | LAB ID | | | | 1 | MS_SWAB1 | Jun 17, 2021 | | Paint | N21-Jn44554 | | Х | | 2 | MS_SWAB2 | Jun 17, 2021 | | Paint | N21-Jn44555 | | Χ | | 3 | MS_SWAB3 | Jun 17, 2021 | | Paint | N21-Jn44556 | | Х | | 4 | MS_SWAB4 | Jun 17, 2021 | | Paint | N21-Jn44557 | | Х | | 5 | CH_SWAB1 | Jun 17, 2021 | | Paint | N21-Jn44558 | | Х | | 6 CH_SWAB2 Jun 17, 2021 Paint N21-Jn44559 | | | | | | | Х | | 7 | CH_SWAB3 | Jun 17, 2021 | | Paint | N21-Jn44560 | | Х | | 8 | CH_SWAB4 | Jun 17, 2021 | | Paint | N21-Jn44561 | | Х | | 9 | RFS_SWAB1 | Jun 17, 2021 | | Paint | N21-Jn44562 | | Χ | Australia Site # 1254 Melbourne Sydney 6 Monterey Road Unit F3, Buildin Dandenong South VIC 3175 16 Mars Road Phone : +61 3 8564 5000 Lane Cove We NATA # 1261 Phone : +61 2* 318001193 02 9954 8118 02 9954 8150 804978 Order No.: Report #: Phone: Fax: Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 **Contact Name:** Received: **Priority:** Due: Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Penrose, Auckland 1061 Rolleston, Christchurch 7675 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290 **New Zealand** Jun 23, 2021 12:30 PM Jun 30, 2021 Stephen Maxwell 5 Day ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Company Name: Ramboll Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060 Project Name: Address: **Project ID:** 318001193 CAPTAINS FLAT LEAD MANAGEMENT PLAN Eurofins Analytical Services Manager : Andrew Black | | | Sa | mple Detail | | | HOLD | Lead (% w/w) | |------|------------------|-----------------|-------------|-------|-------------|------|--------------| | Melb | ourne Laborato | ory - NATA Site | # 1254 | | | | | | Sydı | ney Laboratory | - NATA Site # 1 | 8217 | | | Х | Х | | Bris | bane Laborator | y - NATA Site # | 20794 | | | | | | Pert | h Laboratory - N | NATA Site # 237 | '36 | | | | | | May | field Laboratory | - NATA Site # | 25079 | | | | | | Exte | rnal Laboratory | , | | | | | | | 10 | RFS_SWAB2 | Jun 17, 2021 | | Paint | N21-Jn44563 | | Х | | 11 | RFS_SWAB3 | Jun 17, 2021 | | Paint | N21-Jn44564 | | Х | | 12 | RFS_SWAB4 | Jun 17, 2021 | | Paint | N21-Jn44565 | | Х | | 13 | STP_SWAB1 | Jun 17, 2021 | | Paint | N21-Jn44566 | | Х | | 14 | STP_SWAB2 | Jun 17, 2021 | | Paint | N21-Jn44567 | | Х | | 15 | STP_SWAB3 | Jun 17, 2021 | | Paint | N21-Jn44568 | | Х | | 16 | STP_SWAB4 | Jun 17, 2021 | | Paint | N21-Jn44569 | | Х | | 17 | SWAB_QA01 | Jun 17, 2021 | | Paint | N21-Jn44570 | | Х | | 18 | SWAB_QA02 | Jun 17, 2021 | | Paint | N21-Jn44571 | | Х | | 19 | SWAB_RB | Jun 17, 2021 | | Paint | N21-Jn44572 | | Х | | 20 | SWAB_BLAN | Jun 17, 2021 | | Paint | N21-Jn44573 | | Х | Australia Site # 1254 Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217 Brisbane Sydney Fax: Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com Ramboll Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060 **Project Name:**
Company Name: Address: CAPTAINS FLAT LEAD MANAGEMENT PLAN Project ID: 318001193 Order No.: 318001193 Received: Jun 23, 2021 12:30 PM Report #: 804978 Due: Jun 30, 2021 Phone: 02 9954 8118 **Priority:** 5 Day 02 9954 8150 Stephen Maxwell **Contact Name:** **Eurofins Analytical Services Manager: Andrew Black** | | Sample Detail Melbourne Laboratory - NATA Site # 1254 | | | | | | | | | |------|--|-----------------|--------|-------|-------------|---|---|--|--| | Mell | oourne Laborate | ory - NATA Site | # 1254 | | | | | | | | Syd | ney Laboratory | - NATA Site # 1 | 8217 | | | Х | Х | | | | Bris | bane Laborator | y - NATA Site # | 20794 | | | | | | | | | h Laboratory - N | | | | | | | | | | May | field Laboratory | / - NATA Site # | 25079 | | | | | | | | Exte | rnal Laboratory | 1 | r | | | | | | | | 20 | SWAB_BLAN
K | Jun 17, 2021 | | Paint | N21-Jn44573 | | | | | | 21 | MS_VAC1 | Jun 17, 2021 | | Paint | N21-Jn44574 | Х | | | | | 22 | MS_VAC2 | Jun 17, 2021 | | Paint | N21-Jn44575 | Х | | | | | 23 | MS_VAC3 | Jun 17, 2021 | | Paint | N21-Jn44576 | Х | | | | | 24 | CH_VAC1 | Jun 17, 2021 | | Paint | N21-Jn44577 | Х | | | | | 25 | CH_VAC2 | Jun 17, 2021 | | Paint | N21-Jn44578 | Х | | | | | 26 | CH_VAC3 | Jun 17, 2021 | | Paint | N21-Jn44579 | Х | | | | | 27 | RFS_VAC1 | Jun 17, 2021 | | Paint | N21-Jn44580 | Х | | | | | 28 | RFS_VAC2 | Jun 17, 2021 | | Paint | N21-Jn44581 | Х | | | | | 29 | RFS_VAC3 | Jun 17, 2021 | | Paint | N21-Jn44582 | Χ | | | | Australia Site # 1254 Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Sydney Unit F3, Building F Lane Cove West NSW 2066 Phone : +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Order No.: Report #: Phone: Fax: Brisbane 1/21 Smallwood Place Murarrie QLD 4172 NATA # 1261 Site # 20794 318001193 02 9954 8118 02 9954 8150 804978 Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Received: **Priority:** **Contact Name:** Due: Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 Jun 23, 2021 12:30 PM Jun 30, 2021 Stephen Maxwell **New Zealand** Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Address: Ramboll Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060 **Project Name:** Project ID: 318001193 CAPTAINS FLAT LEAD MANAGEMENT PLAN | Eurofins Analy | rtical Services | Manager : | Andrew Black | |-----------------------|------------------|--------------|---------------| | Euroillis Allan | /licai sei vices | ivialiayel . | Allulew black | 5 Day | Sample Detail | | | | | | | | |--|--|-----------------|-------|--|--|---|---| | | ourne Laborato | - | | | | | | | Sydr | ey Laboratory | - NATA Site # 1 | 8217 | | | Х | Х | | Brisk | pane Laboratory | y - NATA Site # | 20794 | | | | | | Perth | n Laboratory - N | IATA Site # 237 | 36 | | | | | | Mayf | ield Laboratory | - NATA Site # : | 25079 | | | | | | Exte | rnal Laboratory | | | | | | | | 30 | 30 STP_VAC1 Jun 17, 2021 Paint N21-Jn44583 | | | | | Χ | | | 31 | | | | | | | | | 32 STP_VAC3 Jun 17, 2021 Paint N21-Jn44585 | | | | | | | | | Test | Test Counts | | | | | | | Ramboll Environ Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060 NATA Accredited Accreditation Number 1261 Site Number 25079 Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates. Attention: Stephen Maxwell Report 804978-A Project name CAPTAINS FLAT LEAD MANAGEMENT PLAN Project ID 318001193 Received Date Jun 23, 2021 | Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled | | | MS_SWAB1
Wipes
N21-Jn44554
Jun 17, 2021 | MS_SWAB2
Wipes
N21-Jn44555
Jun 17, 2021 | MS_SWAB3
Wipes
N21-Jn44556
Jun 17, 2021 | MS_SWAB4
Wipes
N21-Jn44557
Jun 17, 2021 | |---|-----|----------|--|--|--|--| | Test/Reference | LOR | Unit | | | | | | Heavy Metals | | | | | | | | Lead | 1 | Total ug | 640 | 97 | 210 | 22 | | Client Sample ID
Sample Matrix | | | CH_SWAB1
Wipes | CH_SWAB2
Wipes | CH_SWAB3
Wipes | CH_SWAB4
Wipes | |-----------------------------------|-----|----------|-------------------|-------------------|-------------------|-------------------| | Eurofins Sample No. | | | N21-Jn44558 | N21-Jn44559 | N21-Jn44560 | N21-Jn44561 | | Date Sampled | | | Jun 17, 2021 | Jun 17, 2021 | Jun 17, 2021 | Jun 17, 2021 | | Test/Reference | LOR | Unit | | | | | | Heavy Metals | | | | | | | | Lead | 1 | Total ug | 8.7 | 2.4 | 46 | 210 | | Client Sample ID
Sample Matrix | | | RFS_SWAB1
Wipes | RFS_SWAB2
Wipes | RFS_SWAB3
Wipes | RFS_SWAB4
Wipes | |-----------------------------------|-----|----------|--------------------|--------------------|--------------------|--------------------| | Eurofins Sample No. | | | N21-Jn44562 | N21-Jn44563 | N21-Jn44564 | N21-Jn44565 | | Date Sampled | | | Jun 17, 2021 | Jun 17, 2021 | Jun 17, 2021 | Jun 17, 2021 | | Test/Reference | LOR | Unit | | | | | | Heavy Metals | | | | | | | | Lead | 1 | Total ug | 43 | 27 | 18 | 8.7 | | Client Sample ID
Sample Matrix | | | STP_SWAB1 Wipes | STP_SWAB2 Wipes | STP_SWAB3 Wipes | STP_SWAB4 Wipes | |-----------------------------------|-----|----------|-----------------|-----------------|-----------------|-----------------| | Eurofins Sample No. | | | | | N21-Jn44568 | N21-Jn44569 | | Date Sampled | | | Jun 17, 2021 | Jun 17, 2021 | Jun 17, 2021 | Jun 17, 2021 | | Test/Reference | LOR | Unit | | | | | | Heavy Metals | | | | | | | | Lead | 1 | Total ug | 10 | 18 | 6.8 | < 1 | | Client Sample ID | | | SWAB_QA01 | SWAB_QA02 | SWAB_RB | SWAB_BLANK | |---------------------|-----|----------|--------------|--------------|--------------|--------------| | Sample Matrix | | | Wipes | Wipes | Wipes | Wipes | | Eurofins Sample No. | | | N21-Jn44570 | N21-Jn44571 | N21-Jn44572 | N21-Jn44573 | | Date Sampled | | | Jun 17, 2021 | Jun 17, 2021 | Jun 17, 2021 | Jun 17, 2021 | | Test/Reference | LOR | Unit | | | | | | Heavy Metals | | | | | | | | Lead | 1 | Total ug | 5.8 | 15 | < 1 | < 1 | #### Sample History Where samples are submitted/analysed over several days, the last date of extraction is reported. If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time. DescriptionTesting SiteExtractedHolding TimeHeavy MetalsSydneyJun 30, 2021180 Days - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS Report Number: 804978-A **Company Name:** Address: #### **Environment Testing** #### Australia Site # 1254 Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Sydney Brisbane Unit F3, Building F Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Fax: 02 9954 8150 Perth 1/21 Smallwood Place 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 20794 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com Ramboll Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060 **Project Name:** CAPTAINS FLAT LEAD MANAGEMENT PLAN Project ID: 318001193 Order No.: 318001193 Received: Jun 23, 2021 12:30 PM Report #: 804978 Due: Jun 30, 2021 Phone: 02 9954 8118 **Priority:** 5 Day > **Contact Name:** Stephen Maxwell > > **Eurofins Analytical Services Manager: Andrew Black** | Sample Detail Melbourne Laboratory - NATA Site # 1254 | | | | | | | | | | |--|-----------------|-----------------|------------------|--------|-------------|--|--------|--|--| | Melbourne Laboratory - NATA Site # 1254 | | | | | | | | | | | Sydney Laboratory - NATA Site # 18217 | | | | | | | | | | | Brisbane Laboratory - NATA Site # 20794 Perth Laboratory - NATA Site # 23736 | | | | | | | | | | | | | - NATA Site # 2 | | | | | \Box | | | | | rnal Laboratory | | | | | | \Box | | | | No | Sample ID | Sample Date | Sampling
Time | Matrix | LAB ID | | | | | | 1 | MS_SWAB1 | Jun 17, 2021 | | Paint | N21-Jn44554 | | Х | | | | 2 | MS_SWAB2 | Jun 17, 2021 | | Paint | N21-Jn44555 | | Х | | | | 3 | MS_SWAB3 | Jun 17, 2021 | | Paint | N21-Jn44556 | | Х | | | | 4 | MS_SWAB4 | Jun 17, 2021 | | Paint | N21-Jn44557 | | Х | | | | 5 CH_SWAB1 Jun 17, 2021 Paint N21-Jn44558 | | | | | | | | | | | 6 CH_SWAB2 Jun 17, 2021 Paint N21-Jn44559 | | | | | | | | | | | 7 CH_SWAB3 Jun 17, 2021 Paint N21-Jn44560 | | | | | | | | | | | 8 | CH_SWAB4 | Jun 17, 2021 | | Paint | N21-Jn44561 | | Х | | | | 9 | RFS_SWAB1 | Jun 17, 2021 | | Paint | N21-Jn44562 | | Х | | | Australia Site # 1254 Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3
8564 5000 NATA # 1261 Unit F3, Building F Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Fax: Sydney Brisbane Perth 1/21 Smallwood Place 46-48 Banksia Road Murarrie QLD 4172 Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 20794 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com Ramboll Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060 **Project Name:** **Company Name:** Address: CAPTAINS FLAT LEAD MANAGEMENT PLAN Project ID: 318001193 Order No.: 318001193 Received: Jun 23, 2021 12:30 PM Report #: 804978 Due: Jun 30, 2021 Phone: 02 9954 8118 **Priority:** 5 Day 02 9954 8150 **Contact Name:** Stephen Maxwell **Eurofins Analytical Services Manager: Andrew Black** | Sample Detail | | | | | | | | | |---|---|-------------------|-------|-------|-------------|--|---|--| | Melbourne Laboratory - NATA Site # 1254 | | | | | | | | | | Sydney Laboratory - NATA Site # 18217 | | | | | | | Х | | | Bris | bane Laborator | y - NATA Site # | 20794 | | | | | | | Pert | h Laboratory - N | NATA Site # 237 | 36 | | | | | | | May | field Laboratory | / - NATA Site # : | 25079 | | | | | | | Exte | rnal Laboratory | ' | | | | | | | | 10 | RFS_SWAB2 | Jun 17, 2021 | | Paint | N21-Jn44563 | | Х | | | 11 | RFS_SWAB3 | Jun 17, 2021 | | Paint | N21-Jn44564 | | Х | | | 12 | RFS_SWAB4 | Jun 17, 2021 | | Paint | N21-Jn44565 | | Х | | | 13 | STP_SWAB1 | Jun 17, 2021 | | Paint | N21-Jn44566 | | Х | | | 14 | STP_SWAB2 | Jun 17, 2021 | | Paint | N21-Jn44567 | | Х | | | 15 | STP_SWAB3 | Jun 17, 2021 | | Paint | N21-Jn44568 | | Х | | | 16 | STP_SWAB4 | Jun 17, 2021 | | Paint | N21-Jn44569 | | Х | | | 17 | SWAB_QA01 | Jun 17, 2021 | | Paint | N21-Jn44570 | | Х | | | 18 | SWAB_QA02 | Jun 17, 2021 | | Paint | N21-Jn44571 | | Х | | | 19 | 19 SWAB_RB Jun 17, 2021 Paint N21-Jn44572 | | | | | | | | | 20 | SWAB_BLAN | Jun 17, 2021 | | Paint | N21-Jn44573 | | Х | | **Company Name:** **Project Name:** Address: #### **Environment Testing** #### Australia Site # 1254 Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Unit F3, Building F Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Fax: Sydney Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290 ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com Ramboll Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060 CAPTAINS FLAT LEAD MANAGEMENT PLAN Project ID: 318001193 Order No.: 318001193 Received: Jun 23, 2021 12:30 PM Report #: 804978 Due: Jun 30, 2021 Phone: 02 9954 8118 **Priority:** 5 Day 02 9954 8150 **Contact Name:** Stephen Maxwell **Eurofins Analytical Services Manager: Andrew Black** **New Zealand** | Sample Detail | | | | | | | | |--|------------------|--------------|-------|-------|-------------|---|---| | Melbourne Laboratory - NATA Site # 1254 | | | | | | | | | Sydney Laboratory - NATA Site # 18217 | | | | | | | Х | | Brisbane Laboratory - NATA Site # 20794 | | | | | | | | | | h Laboratory - N | | | | | | | | _ | field Laboratory | | 25079 | | | | | | | ernal Laboratory | | 1 | Daint | NO4 1-44570 | | | | 20 | SWAB_BLAN
K | Jun 17, 2021 | | Paint | N21-Jn44573 | | | | 21 | MS_VAC1 | Jun 17, 2021 | | Paint | N21-Jn44574 | Х | | | 22 | MS_VAC2 | Jun 17, 2021 | | Paint | N21-Jn44575 | Х | | | 23 | MS_VAC3 | Jun 17, 2021 | | Paint | N21-Jn44576 | Х | | | 24 | CH_VAC1 | Jun 17, 2021 | | Paint | N21-Jn44577 | Х | | | 25 CH_VAC2 Jun 17, 2021 Paint N21-Jn44578 | | | | | | | | | 26 CH_VAC3 Jun 17, 2021 Paint N21-Jn44579 | | | | | | | | | 27 RFS_VAC1 Jun 17, 2021 Paint N21-Jn44580 | | | | | | | | | 28 | RFS_VAC2 | Jun 17, 2021 | | Paint | N21-Jn44581 | Х | | | 29 | RFS_VAC3 | Jun 17, 2021 | | Paint | N21-Jn44582 | Х | | **Company Name:** **Project Name:** Address: #### **Environment Testing** #### Australia Site # 1254 Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Sydney Unit F3, Building F Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane Perth 1/21 Smallwood Place 46-48 Banksia Road Murarrie QLD 4172 Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 20794 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 **New Zealand** Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com Ramboll Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060 CAPTAINS FLAT LEAD MANAGEMENT PLAN Project ID: 318001193 Order No.: 318001193 Received: Jun 23, 2021 12:30 PM Report #: 804978 Due: Jun 30, 2021 Phone: 02 9954 8118 **Priority:** 5 Day 02 9954 8150 Fax: **Contact Name:** Stephen Maxwell **Eurofins Analytical Services Manager: Andrew Black** | | Sample Detail Melbourne Laboratory - NATA Site # 1254 | | | | | | | |--|--|-----------------|------------|-------|-------------|----|----| | | | | | | | | | | | ney Laboratory | | | | | Х | Х | | Brisl | pane Laboratory | y - NATA Site # | 20794 | | | | | | Perti | n Laboratory - N | IATA Site # 237 | '36 | | | | | | May | ield Laboratory | - NATA Site # | 25079 | | | | | | Exte | rnal Laboratory | | | | | | | | 30 | STP_VAC1 | Jun 17, 2021 | | Paint | N21-Jn44583 | Χ | | | 31 | STP_VAC2 | Jun 17, 2021 | | Paint | N21-Jn44584 | Х | | | 32 STP_VAC3 Jun 17, 2021 Paint N21-Jn44585 | | | | | | | | | Test | Counts | | | | | 12 | 20 | #### **Internal Quality Control Review and Glossary** #### General - Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request. - 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated. - 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated. - 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences. - 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds - 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise. - 7. Samples were analysed on an 'as received' basis. - 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results. - 9. This report replaces any interim results previously issued. #### **Holding Times** Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001). For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control. For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD #### Units mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres #### **Terms** Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis. LOR Limit of Reporting SPIKE Addition of the analyte to the sample and reported as percentage recovery. RPD Relative Percent Difference between two Duplicate pieces of analysis. LCS Laboratory Control Sample - reported as percent recovery. CRM Certified Reference Material - reported as percent recovery. Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water. **Surr - Surrogate** The addition of a like compound to the analyte target and reported as percentage recovery. **Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show comparison USEPA United States Environmental Protection Agency APHA American Public Health Association TCLP Toxicity Characteristic Leaching Procedure COC Chain of Custody SRA Sample Receipt Advice
QSM US Department of Defense Quality Systems Manual Version 5.3 CP Client Parent - QC was performed on samples pertaining to this report NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within. TEQ Toxic Equivalency Quotient #### QC - Acceptance Criteria RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable: Results <10 times the LOR: No Limit Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$ Results >20 times the LOR : RPD must lie between 0-30% Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected. WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA #### **QC Data General Comments** - 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided. - 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples. - 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS. - 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike. - 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report. - 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt. - 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte. - 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS. - 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample. - 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data. #### **Quality Control Results** | Test | Units | Result 1 | | Acceptance
Limits | Pass
Limits | Qualifying
Code | |------------------|----------|----------|--|----------------------|----------------|--------------------| | Method Blank | | | | | | | | Heavy Metals | | | | | | | | Lead | Total ug | < 1 | | 1 | Pass | | | LCS - % Recovery | | | | | | | | Heavy Metals | | | | | | | | Lead | % | 99 | | 80-120 | Pass | | #### Comments #### Sample Integrity Custody Seals Intact (if used) Attempt to Chill was evident N/A Sample correctly preserved Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Samples received within HoldingTime Yes Some samples have been subcontracted No #### Authorised by: Andrew Black Analytical Services Manager John Nguyen Senior Analyst-Metal (NSW) Glenn Jackson General Manager Final Report - this report replaces any previously issued Report - Indicates Not Requested - * Indicates NATA accreditation does not cover the performance of this service Measurement uncertainty of test data is available on request or please click here. Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received. Report Number: 804978-A #### **Grace Tuckwell** From: #AU04 Enviro Sample NSW **Subject:** FW: 5 DAY TAT ADDITIONAL ANALYSIS: FW: Extra analyses of dust samples from Eurofins ref: 804978 **Attachments:** 804978_summary.pdf From: Stephen Maxwell <SMAXWELL@ramboll.com> Sent: Monday, 19 July 2021 9:32 AM To: Andrew Black < Andrew Black@eurofins.com> Cc: Nathan McGuire < MCGUIRE@ramboll.com> Subject: Extra analyses of dust samples from Eurofins ref: 804978 #### **EXTERNAL EMAIL*** #### Hi Andrew Can we co-ordinate analyses of dust samples MS_VAC1 - MSVAC3 described under the attached work summary to be analysed for lead (mg/kg). If sufficient volume exists can we also analyse for titanium and sulfur? #### Kind regards #### **Stephen Maxwell** Lead Consultant 3182675 - Hunter D +61 478658194 M +61 478658194 smaxwell@ramboll.com Connect with us in Ramboll Level 2, Suite 18 Eastpoint 50 Glebe Road PO Box 435 The Junction NSW 2291 Australia Ramboll Australia Pty Ltd. ACN 095 437 442 ABN 49 095 437 442 https://ramboll.com * WARNING - EXTERNAL: This email originated from outside of Eurofins. Do not click any links or open any attachments unless you trust the sender and know that the content is safe! ABN: 50 005 085 521 www eurofins com au EnviroSales@eurofins.com **New Zealand** Australia Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 Clink F3, Buildin American F3, Buildin Lane Cove We Site # 1254 Sydney Unit F3. Building F NATA # 1261 Site # 18217 NATA # 1261 Site # 40017 in smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 40017 1/21 Smallwood Place NATA # 1261 Site # 20794 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 NATA # 1261 Site # 25079 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 #### Sample Receipt Advice Company name: Ramboll Australia Pty Ltd Contact name: Stephen Maxwell Project name: ADDITONAL CAPTAINS FLAT LEAD MANAGEMENT PLAN Project ID: 318001193 Turnaround time: 5 Day Date/Time received **Eurofins reference** Jul 19, 2021 9:32 AM 811512 #### Sample Information A detailed list of analytes logged into our LIMS, is included in the attached summary table. All samples have been received as described on the above COC. COC has been completed correctly. N/A Attempt to chill was evident. Appropriately preserved sample containers have been used. All samples were received in good condition. Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times. Appropriate sample containers have been used. Sample containers for volatile analysis received with zero headspace. Split sample sent to requested external lab. Some samples have been subcontracted. N/A Custody Seals intact (if used). #### **Notes** #### Contact If you have any questions with respect to these samples, please contact your Analytical Services Manager: Andrew Black on phone: (+61) 2 9900 8490 or by email: AndrewBlack@eurofins.com Results will be delivered electronically via email to Stephen Maxwell - smaxwell@ramboll.com. Note: A copy of these results will also be delivered to the general Ramboll Australia Pty Ltd email address. **Company Name:** Address: #### **Environment Testing** Australia Site # 1254 Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Sydney Unit F3, Building F Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Order No.: Report #: Phone: Fax: Brisbane Perth 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 811512 02 9954 8118 02 9954 8150 Newcastle 46-48 Banksia Road 4/52 Industrial Drive Welshpool WA 6106 Mayfield East NSW 2304 Phone: +61 8 9251 9600 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 23736 NATA # 1261 Site # 25079 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 Jul 19, 2021 9:32 AM Jul 26, 2021 Stephen Maxwell 5 Day **New Zealand** Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com Ramboll Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060 **Project Name:** Project ID: 318001193 ADDITONAL CAPTAINS FLAT LEAD MANAGEMENT PLAN **Eurofins Analytical Services Manager: Andrew Black** **Priority:** **Contact Name:** Received: Due: | Sample Detail | | | | | | | | Titanium | |---|------------------|---------------------------------------|------------------|--------|-------------|---|---|----------| | Melb | ourne Laborato | ry - NATA Site | # 1254 | | | | Х | | | Sydn | ey Laboratory - | NATA Site # 1 | 8217 | | | Χ | | Х | | Brisk | pane Laboratory | / - NATA Site # | 20794 | | | | | | | Perth | n Laboratory - N | IATA Site # 237 | 36 | | | | | | | Mayf | ield Laboratory | - NATA Site # 2 | 25079 | | | | | | | Exte | rnal Laboratory | | | | | | | | | No | Sample ID | Sample Date | Sampling
Time | Matrix | LAB ID | | | | | 1 | MS_VAC1 | MS_VAC1 Jun 17, 2021 Dust S21-Jl34967 | | | | | | Χ | | 2 | MS_VAC2 | Jun 17, 2021 | | Dust | S21-JI34968 | Χ | Х | Х | | 3 MS_VAC3 Jun 17, 2021 Dust S21-Jl34969 | | | | | | | Х | Х | | Test | Test Counts
| | | | | | | 3 | Ramboll Environ Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060 NATA Accredited Accreditation Number 1261 Site Number 18217 Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates. Attention: Stephen Maxwell Report 811512-S Project name ADDITONAL CAPTAINS FLAT LEAD MANAGEMENT PLAN Project ID 318001193 Received Date Jul 19, 2021 | Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled | | | MS_VAC1
Dust
S21-JI34967
Jun 17, 2021 | MS_VAC2
Dust
S21-JI34968
Jun 17, 2021 | MS_VAC3
Dust
S21-JI34969
Jun 17, 2021 | |---|-----|-------|--|--|--| | Test/Reference | LOR | Unit | | | | | | | | | | | | Sulphur | 5 | mg/kg | 1000 | 1100 | 990 | | Heavy Metals | | | | | | | Lead | 5 | mg/kg | 360 | 270 | 300 | | Titanium | 10 | mg/kg | 170 | 180 | 150 | #### Sample History Where samples are submitted/analysed over several days, the last date of extraction is reported. If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time. | Description | Testing Site | Extracted | Holding Time | |---|--------------|--------------|---------------------| | Sulphur | Melbourne | Jul 20, 2021 | 7 Days | | - Method: LTM-MET-3010 Alkali Metals Sulfur Silicon and Phosphorus by ICP-AES | | | | | Heavy Metals | Sydney | Jul 23, 2021 | 180 Days | Australia Site # 1254 Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Unit F3, Building F Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Phone: Fax: Sydney Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 02 9954 8118 02 9954 8150 Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Auckland Christchurch 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Ramboll Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060 ADDITONAL CAPTAINS FLAT LEAD MANAGEMENT PLAN **Project Name:** Project ID: Address: 318001193 Order No.: Received: Jul 19, 2021 9:32 AM Report #: 811512 Due: Jul 26, 2021 **Priority:** 5 Day **Contact Name:** Stephen Maxwell **Eurofins Analytical Services Manager: Andrew Black** **New Zealand** | | Lead | Sulphur | Titanium | | | | | | |---|---------------------------------------|-----------------|------------------|--------|--------|---|---|---| | Melb | ourne Laborato | ry - NATA Site | # 1254 | | | | Х | | | Sydn | ey Laboratory - | - NATA Site # 1 | 8217 | | | Х | | Х | | Brisk | ane Laboratory | / - NATA Site # | 20794 | | | | | | | Perth | Laboratory - N | IATA Site # 237 | 36 | | | | | | | Mayf | ield Laboratory | - NATA Site # 2 | 25079 | | | | | | | Exte | rnal Laboratory | | | | | | | | | No | Sample ID | Sample Date | Sampling
Time | Matrix | LAB ID | | | | | 1 | MS_VAC1 Jun 17, 2021 Dust S21-Jl34967 | | | | | | Х | Χ | | 2 MS_VAC2 Jun 17, 2021 Dust S21-Jl34968 | | | | | | | Χ | Х | | 3 MS_VAC3 Jun 17, 2021 Dust S21-Jl34969 | | | | | | | Χ | Х | | Test | est Counts | | | | | | | 3 | #### Internal Quality Control Review and Glossary #### General - Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request. - 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated. - All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated. - Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences. - 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds - 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise. - 7. Samples were analysed on an 'as received' basis. - 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results. - This report replaces any interim results previously issued. #### **Holding Times** Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001). For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control. For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD mg/kg: milligrams per kilogram ma/L: milligrams per litre ug/L: micrograms per litre ppm: Parts per million ppb: Parts per billion %: Percentage org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres #### **Terms** Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis. LOR SPIKE Addition of the analyte to the sample and reported as percentage recovery. RPD Relative Percent Difference between two Duplicate pieces of analysis. LCS Laboratory Control Sample - reported as percent recovery. CRM Certified Reference Material - reported as percent recovery. Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water The addition of a like compound to the analyte target and reported as percentage recovery. Surr - Surrogate Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison USEPA United States Environmental Protection Agency American Public Health Association APHA TCLP Toxicity Characteristic Leaching Procedure COC Chain of Custody SRA Sample Receipt Advice QSM US Department of Defense Quality Systems Manual Version 5.3 CP Client Parent - QC was performed on samples pertaining to this report NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within. TEQ Toxic Equivalency Quotient #### QC - Acceptance Criteria RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable: Results <10 times the LOR: No Limit Results between 10-20 times the LOR: RPD must lie between 0-50% Results >20 times the LOR: RPD must lie between 0-30% Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA #### QC Data General Comments - 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided. - 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples. - 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS. - 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike. - Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report. - 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt. - 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte. - 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS. - 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample. - 10. Duplicate RPDs are calculated from
raw analytical data thus it is possible to have two sets of data. #### **Quality Control Results** | Test | | | Units | Result 1 | | | Acceptance
Limits | Pass
Limits | Qualifying
Code | |--------------------|---------------|--------------|-------|----------|----------|-----|----------------------|----------------|--------------------| | Method Blank | | | | | | | | | | | Heavy Metals | | | | | | | | | | | Lead | | | mg/kg | < 5 | | | 5 | Pass | | | Titanium | | mg/kg | < 10 | | | 10 | Pass | | | | LCS - % Recovery | | | | | | | | | | | Heavy Metals | | | | | | | | | | | Lead | | | % | 100 | | | 80-120 | Pass | | | Titanium | | | % | 97 | | | 80-120 | Pass | | | Test | Lab Sample ID | QA
Source | Units | Result 1 | | | Acceptance
Limits | Pass
Limits | Qualifying
Code | | Spike - % Recovery | | | | | | | | | | | Heavy Metals | | | | Result 1 | | | | | | | Lead | S21-Jl28844 | NCP | % | 106 | | | 75-125 | Pass | | | Titanium | N21-JI33907 | NCP | % | 91 | | | 75-125 | Pass | | | Test | Lab Sample ID | QA
Source | Units | Result 1 | | | Acceptance
Limits | Pass
Limits | Qualifying
Code | | Duplicate | | | | | | | | | | | Heavy Metals | | | | Result 1 | Result 2 | RPD | | | | | Lead | S21-Jl29409 | NCP | mg/kg | 17 | 18 | 5.0 | 30% | Pass | | | Titanium | S21-Jl29409 | NCP | mg/kg | < 10 | < 10 | <1 | 30% | Pass | | #### Comments #### Sample Integrity Custody Seals Intact (if used) N/A Attempt to Chill was evident N/A Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No #### Authorised by: Andrew Black Analytical Services Manager Emily Rosenberg Senior Analyst-Metal (VIC) John Nguyen Senior Analyst-Metal (NSW) Glenn Jackson General Manager Final Report - this report replaces any previously issued Report - Indicates Not Requested - * Indicates NATA accreditation does not cover the performance of this service Measurement uncertainty of test data is available on request or please click here. Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received. Report Number: 811512-S | Ramboll | - Captains | Flat | Men's | Shed | |---------|------------|------|-------|------| | | | | | | **Attachment 3 – Lead Exposure Assessment Captains Flat Men's Shed** #### Attachment 3: Lead Exposure Assessment: Captains Flat Men's Shed The Tier 1 risk assessment for members of the Men's Shed using the Foxlow Street building is presented under the results section of the Captains Flat Men's Shed Lead Investigation Report. A lead exposure assessment specific to the current use of the Captains Flat Men's Shed is presented below and was undertaken due to exceedance of the nationally applicable Tier 1 dust guideline values. **Table 1** presents an assessment of standard work hours, work hours adopted for the development of the nationally applicable Tier 1 (HIL-D) guideline values and details of how Men's Shed members use the site. Site specific durations and frequencies are based on Ramboll discussions with a representative of the Captains Flat Men's Shed 22 – 23 November 2021. Table 1: Exposure assessment against standard work hours | Work Time | Units | Standard
Workday
hrs | HIL-D hrs | Men's Shed
Usage of
Site hrs¹ | Comments | |-----------------------|----------|----------------------------|-----------|-------------------------------------|--| | Time Spent Outdoors | hours/d | - | 1 | 1 | Assumed that Men's Shed members spend 1 hour outside per day. | | Time Spent indoors | hours/d | - | 8 | 5.5 | Assumed that Men's Shed members spend 5.5 hours indoors where possible dust exposure may occur | | Total work hours/day | hours/d | 8 | 9 | 6.5 | Total indoor and outdoor time for
Men's Shed members personnel | | Workdays/week | days/wk | 5 | 5 | 2 | Assumes Men's Shed members use the facility both days each weekend | | Total work hours/week | hours/wk | 40 | 45 | 13 | Assumes standard workdays per | | Workdays/year | days/yr | 240 | 240 | 240 | year. Exposure at Men's Shed is about 3.5-times lower than | | Total work hours/year | hours/yr | 9600 | 10800 | 3120 | under HIL-D hours | ¹Men's Shed usage of the compound presented in Table 1 is based on anecdotal account from a Men's Shed representative. Assessment of Men's Shed site usage against generic site usage shows that potential exposure for Men's Shed members is about 3-times lower than workers undertaking standard work hours. Therefore, based on this exposure assessment, the following can be summarised: - The average lead loading is considered to represent a realistic exposure scenario and relevant indoor dust loading (µg/m²) guidelines are exceeded by about 3.5-times, while HIL-D guidelines (mg/kg) applied to indoor dust are not exceeded - Cumulative potential exposure for Men's Shed members to indoor and outdoor lead dust would be 3-times lower than potential exposure during normal work hours - It is expected that outdoor dusts will primarily be generated from surface soils, and therefore potential outdoor exposure risk to Men's Shed members is from lead in surface soil. HIL-D (1500 mg/kg) assumes standard work hours and given that Men's Shed members are at the site for a third of the time (three times less), applicable site-specific soil guideline value (SSGV) would be three times higher (i.e 1,500 x 3 = 4,500 mg/kg). - While it is noted that lead loading in internal dust measured at the Men's Shed exceeded Tier 1 guidelines by up to seven times, lead concentrations in internal dust are less than 10% of the site-specific guideline. Furthermore, integrated assessment of indoor and outdoor lead concentrations indicates the maximum concentration (560 mg/kg) is approximately nine times lower than the site-specific guideline. Based on these lines of evidence the potential exposure risks from lead in indoor dust and/or outdoor soil are considered to be low and acceptable.